Imperial College London 100 years of living science

First $\nu_{\mu} \rightarrow \nu_{e}$ Oscillation Results from MiniBooNE

Morgan Wascko Imperial College London

> UCL HEP Seminar May 11, 2007

Imperial College

Motivation: Neutrino Oscillations

if neutrinos have mass, a neutrino that is produced as a v_{μ} (e.g. $\pi^+ \rightarrow \mu^+ v_{\mu}$) has a non-zero probability to oscillate and some time later be detected as a v_e (e.g. v_e n \rightarrow e⁻p)

Pontecorvo, 1957

Imperial College

Motivation: Neutrino Oscillations

In a world with 2 neutrinos, if the weak eigenstates (v_e, v_μ) are different from the mass eigenstates (v_1, v_2) :

$$\begin{pmatrix} \mathbf{v}_e \\ \mathbf{v}_\mu \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \end{pmatrix}$$

The weak states are mixtures of the mass states:

$$|\mathbf{v}_{\mu}\rangle = -sin\theta|\mathbf{v}_{1}\rangle + cos\theta|\mathbf{v}_{2}\rangle$$
$$|\mathbf{v}_{\mu}(t)\rangle = -sin\theta (|\mathbf{v}_{1}\rangle e^{-iE_{1}t}) + cos\theta (|\mathbf{v}_{2}\rangle e^{-iE_{2}t})$$

The probability to find a v_e when you started with a v_{μ} is:

$$P_{oscillation}(\mathbf{v}_{\mu} \rightarrow \mathbf{v}_{e}) = |\langle \mathbf{v}_{e} | \mathbf{v}_{\mu}(t) \rangle|^{2}$$

Motivation: Neutrino Oscillations

In units that experimentalists like:

$$P_{oscillation}(\mathbf{v}_{\mu} \to \mathbf{v}_{e}) = sin^{2}2\theta sin^{2} \left(\frac{1.27 \ \Delta m^{2}(eV^{2}) \ L(km)}{E_{\mathbf{v}}(GeV)}\right)$$

Oscillation probability between 2 flavour states depends on:

1. fundamental parameters

 $\Delta m^2 = m_1^2 - m_2^2 = mass$ squared difference between states $\sin^2 2\theta = mixing$ between v flavours

- 2. experimental parameters
 - L = distance from v source to detector
 - E = v energy

MO Wascko, HEP Seminar

May 11, 2007 5

Motivation: Oscillation Signals

Solar v: measured by Homestake, ..., SNO confirmed by KamLAND

Atmospheric v: measured by K-II, ..., Super-K confirmed by Soudan2, MACRO, K2K, MINOS

Accelerator v: measured by LSND unconfirmed

Motivation: The Problem

$$P_{oscillation}(\mathbf{v}_{\mu} \rightarrow \mathbf{v}_{e}) = sin^{2}2\theta sin^{2} \left(\frac{1.27 \ \Delta m^{2}(eV^{2}) \ L(km)}{E_{\mathbf{v}}(GeV)}\right)$$

The oscillation signals cannot be reconciled without introducing physics (even farther) beyond the Standard Model.

MO Wascko, HEP Seminar

May 11, 2007 7

Motivation: LSND

MiniBooNE was proposed in 1997 to address the LSND result.

LSND observed a 4 σ excess of \overline{v}_e events in a \overline{v}_{μ} beam: 87.9 ± 22.4 ± 6.0 interpreted as 2-neutrino oscillations, $P(\overline{v}_{\mu} \rightarrow \overline{v}_e) = 0.26\%$

$$P = sin^2 2\theta sin^2 \left(\frac{1.27 \ \Delta m^2 (eV^2) \ L(km)}{E_{\rm v} (GeV)} \right)$$

MiniBooNE strategy:

Keep (L/E_v) same as LSND but change systematics, including event signature:

- Order of magnitude higher E_v than LSND

- Order of magnitude longer baseline *L* than LSND

- Search for excess of v_e events above background Simple $v_{\mu} \rightarrow v_e$ oscillation

Imperial College

The MiniBooNE Collaboration

A. Aguilar-Arevalo⁵, A. O. Bazarko¹², S. J. Brice⁷, B. C. Brown⁷, L. Bugel⁵, J. Cao¹¹, L. Coney⁵,
J. M. Conrad⁵, D. C. Cox⁸, A. Curioni¹⁶, Z. Djurcic⁵, D. A. Finley⁷, B. T. Fleming¹⁶, R. Ford⁷, F. G. Garcia⁷,
G. T. Garvey⁹, J. A. Green^{8,9}, C. Green^{7,9}, T. L. Hart⁴, E. Hawker¹⁵, R. Imlay¹⁰, R. A. Johnson³, P. Kasper⁷,
T. Katori⁸, T. Kobilarcik⁷, I. Kourbanis⁷, S. Koutsoliotas², E. M. Laird¹², J. M. Link¹⁴, Y. Liu¹¹, Y. Liu¹,
W. C. Louis⁹, K. B. M. Mahn⁵, W. Marsh⁷, P. S. Martin⁷, G. McGregor⁹, W. Metcalf¹⁰, P. D. Meyers¹², F. Mills⁷,
G. B. Mills⁹, J. Monroe⁵, C. D. Moore⁷, R. H. Nelson⁴, P. Nienaber¹³, S. Ouedraogo¹⁰, R. B. Patterson¹²,
D. Perevalov¹, C. C. Polly⁸, E. Prebys⁷, J. L. Raaf³, H. Ray⁹, B. P. Roe¹¹, A. D. Russell⁷, V. Sandberg⁹,
R. Schirato⁹, D. Schmitz⁵, M. H. Shaevitz⁵, F. C. Shoemaker¹², D. Smith⁶, M. Sorel⁵, P. Spentzouris⁷,
I. Stancu¹, R. J. Stefanski⁷, M. Sung¹⁰, H. A. Tanaka¹², R. Tayloe⁸, M. Tzanov⁴, M. O. Wascko¹⁰,
R. Van de Water⁹, D. H. White⁹, M. J. Wilking⁴, H. J. Yang¹¹, G. P. Zeller⁵, E. D. Zimmerman⁴

¹University of Alabama, Tuscaloosa, AL 35487 ²Bucknell University, Lewisburg, PA 17837 ³University of Cincinnati, Cincinnati, OH 45221 ⁴University of Colorado, Boulder, CO 80309 ⁵Columbia University, New York, NY 10027 ⁶Embry Riddle Aeronautical University, Prescott, AZ 86301 ⁷Fermi National Accelerator Laboratory, Batavia, IL 60510 ⁸Indiana University, Bloomington, IN 47405 ⁹Los Alamos National Laboratory, Los Alamos, NM 87545 ¹⁰Louisiana State University, Baton Rouge, LA 70803 ¹¹ University of Michigan, Ann Arbor, MI 48109 ¹²Princeton University, Princeton, NJ 08544 ¹³Saint Mary's University of Minnesota, Winona, MN 55987 ¹⁴Virginia Polytechnic Institute & State University, Blacksburg, VA 24061 ¹⁵Western Illinois University, Macomb. IL 61455 ¹⁶Yale University, New Haven, CT 06520

Imperial College

Motivation: MiniBooNE and LSND

If MiniBooNE observes LSND-type ν oscillations...

The simplest explanation is to add more vs, to allow more independent Δm^2 values.

The new vs would have to be **sterile**, otherwise they would have been seen already.

Imperial College

If MiniBooNE does not observe LSND-type oscillations... The Standard Model wins again!

Today: MiniBooNE's initial results on testing the LSND anomaly

- A generic search for a v_e excess in our v_{μ} beam,
- An analysis of the data within a $\nu_{\mu} \rightarrow \nu_{e}$ appearance-only context

Imperial College

OO

Imperial College London to years of thing science

MiniBooNE Overview: Beam and Detector

Protons: 4×10^{12} protons per 1.6 µs pulse, at 3 - 4 Hz from Fermilab Booster accelerator, with E_{proton}=8.9 GeV. *First result uses* (5.58 ± 0.12) x 10²⁰ protons on target.

LMC

450 m

Mesons: mostly π^+ , some K⁺, produced in p-Be collisions, + signs focused into 50 m decay region.

J.L. Raaf

Neutrinos: traverse 450 m soil berm before the detector hall. Intrinsic v_e flux ~ 0.5% of v_{μ} flux.

focusing horn

Detector: 6 m radius, 250,000 gallons of mineral oil (CH₂), which emits Cherenkov and scintillation light. 1280 inner PMTs, 240 PMTs in outer veto region

Decay

Absorber.

Booster

MiniBooNE Detector

Booster Neutrino Beam: Modelling Meson Production

Prediction from a fit to $p \ Be \rightarrow \pi^+ X$ production data from E910 and HARP experiments ($p_p = 6-12 \ GeV/c, \ \Theta_{\pi} = 0 - 330 \ mrad.$)

Imperial College

Booster Neutrino Beam: Neutrino Flux

MiniBooNE is searching for an excess of ν_{e} *in a* ν_{u} *beam*

MiniBooNE Detector: Neutrino Cross Sections

Modelling what the neutrinos do in the detector

Use CCQE events for oscillation analysis signal channel: $E_{v}^{QE} = \frac{1}{2} \frac{2M_{p}E_{\ell} - m_{\ell}^{2}}{M_{p} - E_{\ell} + \sqrt{(E_{\ell}^{2} - m_{\ell}^{2})}cos\theta_{\ell}}$

Only need lepton direction and angle to find v energy!

MO Wascko, HEP Seminar

May 11, 2007 15

MiniBooNE Detector: Optics

charged final state particles produce **Y**s

Cherenkov radiation

- Light emitted by oil if particle v > c/n
- forward and prompt in time

Scintillation

• Excited molecules emit de-excitation \mathbf{Y} s

Ys detected by PMTs after undergoing absorption reemission, scattering, fluorescence

"the optical model"

 $\rightarrow PMT Hits$

MO

MiniBooNE Detector: Hits

First set of cuts based on simple hit clusters in time: "sub-events."

Most events are from v_{μ} CC interactions, with characteristic two "sub-event" structure from stopped μ decay.

 v_{e} CC interactions have 1 "sub-event".

MiniBooNE Detector: Reconstruction and Particle ID 100

Fit time and angular distributions to find tracks

Final State Particle Identification:

muons have sharp Cherenkov rings and long tracks electrons have fuzzy rings, from multiple scattering, and short tracks neutral pions decay to 2 γs, which convert and produce 2 fuzzy rings, *easily misidentified as electrons if one ring gets lost!*

MiniBooNE Beam & Detector: Stability

Neutrinos per proton on target throughout the neutrino run:

MO Wascko, HEP Seminar

Imperial College

Imperial College

Analysis Overview: Blind Analysis

To avoid bias, MiniBooNE has done a blind analysis. "Closed Box" Analysis

To study the data, we defined specific event sets with $< 1\sigma v_e$ signal for analysis.

Initial Open Boxes all non-beam-trigger data 0.25% random sample ν_{μ} CCQE ν_{μ} NC1 π^{0} "dirt" all events with E_v>1.4 GeV ν_{μ} CC1 π^{+} ν_{μ} -e elastic

<u>Second Step:</u> One closed signal box Use calibration and MC tuning an unbiased data set measure flux, $E_v Q^E$, oscillation fit measure rate for MC measure rate for MC check MC rate check MC rate check MC rate

explicitly sequester the signal, 99% of data open

Analysis Overview: Org Chart

Imperial College

what we predict for the full ν data set (5.6E20 protons on target):

Imperial College

what we predict for the full ν data set (5.6E20 protons on target):

Imperial College

what we predict for the full ν data set (5.6E20 protons on target):

Imperial College

what we predict for the full ν data set (5.6E20 protons on target):

Imperial College

Analysis Overview: Strategy

recurring theme: good data/MC agreement

in-situ data are incorporated wherever possible...

(i) MC tuning with calibration data

- energy scale
- PMT response
- optical model of light in the detector

(ii) MC fine-tuning with neutrino data

- cross section nuclear model parameters
- π^{o} rate constraint

"I think you should be more explicit here in step two."

(iii) constraining systematic errors with neutrino data

- ratio method example: v_e from μ decay background
- combined oscillation fit to ν_{μ} and ν_{e} data

Analysis Overview: MC Tuning

MC tuning with calibration data

10

10

10

MO Wascko, HEP Seminar

May 11, 2007 28

Imperial College

R1408 (old) PMTs black points=data blue=MC

green=MC, no reflections

red=MC, no reflections or scattering

Analysis Overview: Strategy

in-situ data are incorporated wherever possible...

(i) MC tuning with calibration data

- energy scale
- PMT response
- optical model of light in the detector

(ii) MC fine-tuning with neutrino data

- cross section nuclear model parameters
- π^{o} rate constraint

ALS ME 24 THEN A MORE THE ALL OF MIRACLE OCCURS 1975 1995 TO ALL 1

"I think you should be more explicit here in step two."

(iii) constraining systematic errors with neutrino data

- ratio method example: v_e from μ decay background
- combined oscillation fit to ν_{μ} and ν_{e} data

MO Wascko, HEP Seminar

May 11, 2007 30

Imperial College London to years of living science

Incorporating v_{μ} Data: CCQE Cross Section

The $v_{\mu}CCQE$ data Q^2 distribution is fit to tune empirical parameters of the nuclear model (¹²C target)

the tuned model is used for both v_{μ} and v_{e} CCQE

this results in good data-MC agreement for variables **not** used in tuning

MO Wascko, HEP Seminar

Analysis Strategy: π^0 Mis-ID Background

The MC π^0 rate (flux × xsec) is re-weighted to match the measurement in p_{π} bins.

MO Wascko, HEP Seminar

Imperial College

May 11, 2007 33

Analysis Overview: Strategy

in-situ data is incorporated wherever possible...

(i) MC tuning with calibration data

- energy scale
- PMT response
- optical model of light in the detector

(ii) MC fine-tuning with neutrino data

- cross section nuclear model parameters
- π^{o} rate constraint

"I think you should be more explicit here in step two."

(iii) constraining systematic errors with neutrino data

- ratio method example: v_e from μ decay background
- combined oscillation fit to v_{μ} and v_{e} data

Analysis Strategy 1: Ratio Method

Example: v_{μ} *CCQE events measure* π^+ *spectrum, constrain* μ^+ *-decay* v_{ρ} *flux*

Ratio Method Constraint:

1. MC based on external data predicts a central value and a range of possible $v_{\mu}(\pi)$ fluxes

2. make Data/MC ratio vs. E_v^{QE} for v_u^{CCQE} data

3. re-weight each possible MC parent- π^+ flux by the ratio (2), including sister μ^+ & niece ν_{μ}

J. Monroe J. Monroe 1000 1000 a set of possible a set of possible $\nu_e(\mu^+)$ fluxes $\nu_{e}(\mu^{+})$ fluxes 800 800 from π^+ from π^+ 600 600 prediction prediction uncertainties. uncertainties. 400 400 re-weighted not re-weighted 200 200 $v_{a}(\mu)$ Before Cuts: E_{μ}^{MC} (GeV) Reweighted $v_{a}(\mu)$ Before Cuts: E_{y}^{MC} (GeV)

reduction in the spread of possible fluxes translates directly into a reduction in the μ^+ decay v_e background uncertainty

 μ^+

Can use ratio method to constrain most BG sources

 π^+

Imperial College London

 e^+

OO

Analysis Strategy 2: Combined Fit

Fit the E_{ν}^{QE} distributions of ν_{e} and ν_{u} events for oscillations, together

ν_e

 ν_{μ}

Raster scan in Δm^2 , and $\sin^2 2\theta_{\mu e}$ ($\sin^2 2\theta_{\mu x} == 0$), calculate χ^2 value over v_e and v_u bins

$$\chi^{2} = \sum_{i=1}^{N_{bins}} \sum_{j=1}^{N_{bins}} (m_{i} - t_{i}) \mathcal{M}_{ij}^{-1} (m_{j} - t_{j})$$

In this case, systematic error matrix M_{ij} includes predicted uncertainties for v_e and v_u bins

 ν_{e}

 $\nu_{\mu}\nu_{e}$

 ν_{μ}

a combined fit constrains uncertainties in common

 $M_{ii} =$

Analysis Strategy: Error Matrix

$$E_{ij} \approx \frac{1}{M} \sum_{\alpha=1}^{M} \left(N_i^{\alpha} - N_i^{MC} \right) \left(N_j^{\alpha} - N_j^{MC} \right)$$

νμ

• N is number of events passing cuts •MC is standard Monte Carlo • α represents a different MC draw (called a "multisim")

• M is the total number of MC draws • i,j are E_{v}^{QE} bins

Total error matrix is sum from each source.

Primary (TB): v_{e} -only total error matrix Cross-check (BDT): v_{μ} - v_{e} total error matrix

Analysis Overview: Systematic Errors

A long list of systematic uncertainties are estimated using Monte Carlo: <u>neutrino flux predictions</u>

- π^+ , π^- , K^+ , K^- , K^0 , n, and p total and differential cross sections
- secondary interactions of mesons
- focusing horn current
- target + horn system alignment

neutrino interaction cross section predictions

- nuclear model
- rates and kinematics for relevant exclusive processes
- resonance width and branching fractions

detector modelling

- optical model of light propagation in oil (39 parameters!)
- PMT charge and time response
- electronics response
- neutrino interactions in dirt surrounding detector hall

√*Most* are constrained or checked using in-situ MiniBooNE data.

N N

Imperial College

Two Independent Oscillation Searches: Methods

Method 1: Track-Based Analysis

- Use careful reconstruction of particle tracks
- Identify particle type by likelihood ratio
- •Use ratio method to constrain backgrounds

Strengths:

Relatively insensitive to optical model Simple cut-based approach with likelihoods

Method 2: Boosted Decision Trees

Primary analysis

Imperial College

 $\overline{00}$

Independent cross-check

- Classify events using "boosted decision trees"
- Apply cuts on output variables to improve separation of event types
- •Use combined fit to constrain backgrounds

Strengths:

Combination of many weak variables form strong classifier Better constraints on background events

Method 1: Track-Based Analysis

Reconstruction fits an extended light source with 7 *parameters*: vertex, direction (θ , ϕ), time, energy

rk

Fit events under 3 possible hypotheses: μ -like, e-like, two track (π^0 -like)

 $\{(x^{k}, y^{k}, z^{k}), t^{k}, Q^{k}\}$

track model

 $dt^{k} = t^{k} - r^{k}/c_{n} - t$

cuts chosen to maximise sensitivity to $v_{\mu} \rightarrow v_{e}$ oscillation

Track-Based Analysis: e/µ Likelihood

Test µ-*e* separation on data:

$\nu_{\mu}CCQE$ data sample

Pre-selection cuts Fiducial volume: (R < 500 cm) 2 subevents: muon + decay electron

<u>"All-but-signal" data sample</u> Pre-selection cuts Fiducial volume: (R < 500 cm) 1 subevent: 8% of muons capture on ¹²C

Events with $\log(L_e/L_\mu) > 0$ (*e-like*) undergo additional fit with two-track hypothesis.

Track-Based Analysis: e/π^0 Likelihood *Test e*- π^0 *separation on data:*

Method 2: Boosted Decision Trees

Decision Trees: A machine-learning technique which tries to recover signal events that would be eliminated in cutbased analyses.

Training a decision tree:

Boosting: Increase weight of misclassified events. Re-training with newly weighted events improves performance.

B.P. Roe, et al., NIM A543 (2005) 577.H. Yang, B.P. Roe, J. Zhu, NIM A555 (2005) 370

Boosted Decision Trees: Reconstruction and Particle ID

Reconstruction fits a point-like light source: vertex, direction (θ, ϕ) , time, energy

Fitter resolutionVertex:24 cmDirection:3.8°Energy:14%

mperial College

100

Particle ID "input variables" for the boosted decision trees are created from basic quantities in each bin: *e.g.*, charge, number of hits...*To select events, a particle ID cut is made on the Boosting output score.*

Boosted Decision Trees: Particle ID

A sideband region is selected to validate MC in region near signal.

Sideband contains mostly misidentified π^0 background events.

A χ^2 is calculated using the full systematic error matrix, data and MC are consistent.

Comparison: Efficiencies

The two analyses have different event selection efficiency vs. energy trends,

and different reconstructed E_{v} regions for the oscillation analyses.

Imperial College London

100

Comparison: Backgrounds

The two analyses have somewhat different background compositions.

Source	T-B	B
v_e from μ decay	0.37	0.32
v_e from K decay	0.26	0.24
$\pi^0 mis - ID$	0.17	0.21
$\Delta { ightarrow} N \gamma$	0.06	0.07
Dirt	0.05	0.11
Other	0.09	0.05

Track-Based Analysis

Imperial College

100

Comparison: Systematic Errors

Both analyses construct error matrices for the oscillation fit, binned in E_v , to estimate the uncertainty on the expected number of v_e background events.

source	track-based (%)	boosting (%)
Flux from π^+/μ^+ decay	6.2	4.3
Flux from K+ decay	3.3	1.0
Flux from K ⁰ decay	1.5	0.4
Target and beam models	2.8	1.3
v-cross section	12.3	10.5
NC π^0 yield	1.8	1.5
External interactions	0.8	3.4
Optical model	6.1	10.5
DAQ electronics model	7.5	10.8
constrained total	9.6	14.5

<u>Note:</u> "total" is **not** the quadrature sum-- errors are further reduced by fitting with v_{μ} data $\sqrt{}$

Imperial College London to years of living science

Comparison: Sensitivity

Fit the Monte Carlo E_{ν}^{QE} event distributions for oscillations

Raster scan in Δm^2 , and $sin^2 2\theta_{\mu e}$ (assume $sin^2 2\theta_{\mu x} == 0$), calculate χ^2 value over E_v bins

$$\chi^{2} = \sum_{i=1}^{N_{bins}} \sum_{j=1}^{N_{bins}} (m_{i} - t_{i}) \ \mathcal{M}_{ij}^{-1} \ (m_{j} - t_{j})$$

 $m_i =$ Number of measured data events in bin i $t_i =$ Number of predicted events in bin i $(t_i \text{ events are a function of } \Delta m^2, \sin^2 2\theta,$ $M_{ij}^{-1} =$ Inverse of the covariance matrix

Since the track-based analysis achieved better sensitivity than the boosted decision tree analysis, we decided (before opening the box) that it would be used for the primary result.

Imperial College

 IOC

Results: Opening the Box

After applying all analysis cuts:

Step 1: Fit sequestered data to an oscillation hypothesis Fit does not return fit parameters Unreported fit parameters applied to MC; diagnostic variables compared to data Return only the χ^2 of the data/MC comparisons (for diagnostic variables only)

Step 2: Open plots from Step 1 (Monte Carlo has unreported signal) Plots chosen to be useful diagnostics, without indicating if signal was added (reconstructed position, direction, visible energy...)

Step 3: Report only the χ^2 for the fit to E_{ν}^{QE} No fit parameters returned

Step 4: Compare E_v^{QE} for data and Monte Carlo, Fit parameters **are** returned This step breaks blindness

Step 5: Present results within two weeks

MOW (blinded) c.2002

100 years of living science

We opened the box on March 26, 2007

sis

Results: Track Based Analysis

<u>Counting Experiment</u>: data: expectation:

 $475 < E_{v}^{QE} < 1250 \text{ MeV}$ 380 358 ±19 (stat) ± 35 (sys)

Imperial College

100

Best Fit (dashed): $(\sin^2 2\theta, \Delta m^2) = (0.001, 4 \text{ eV}^2)$ χ^2 prob. of best-fit point: 99% χ^2 prob. of null hypothesis: 93%

We observe no significant evidence for an excess of v_e events in the energy range of the analysis.

NB: Errors bars = diagonals of error matrix

Results: Track Based Analysis, Lower Energy Threshold

MO Wascko, HEP Seminar

Results: Boosted Decision Tree Analysis

Counting Experiment:
 $300 < E_v^{QE} < 1500 \text{ MeV}$ significance:
-0.38 σ data:971
expectation:1070 ±33 (stat) ± 225(sys)

Best Fit Point (dashed): $(\sin^2 2\theta, \Delta m^2) = (0.001, 7 \text{ eV}^2)$

 χ^2 probability of best-fit point: 52% χ^2 probability of null hypothesis: 62%

We observe no significant evidence for an excess of v_e events in the energy range of the analysis.

Results: Comparison

MiniBooNE observes no evidence for $v_{\mu} \rightarrow v_{e}$ *appearance-only oscillations.*

The two independent oscillation analyses are in agreement.

solid: track-based $\Delta \chi^2 = \chi^2_{best fit} - \chi^2_{null}$ = 0.94

dashed: boosting $\Delta \chi^2 = \chi^2_{best fit} - \chi^2_{null}$ = 0.71

Therefore, we set a limit.

Results: Compatibility with LSND

A MiniBooNE-LSND Compatibility Test:

$$\chi_0^2 = \frac{(z_{MB} - z_0)^2}{\sigma_{MB}^2} + \frac{(z_{LSND} - z_0)^2}{\sigma_{LSND}^2}$$

- For each Δm^2 , form χ^2 between MB and LSND measurement
- Find z_0 (sin²2 θ) that minimises χ^2 (weighted average of 2 measurements), this gives χ^2_{min}
- Find probability of χ^2_{min} for 1 dof = joint compatibility probability for this Δm^2

Imperial College

Results: Plans

A paper on this analysis is posted to the archive.

Many more papers supporting this analysis will follow, in the very near future:

 $v_{\mu} CCQE production$ $\pi^{0} production$

We are pursuing further analyses of the neutrino data, including: an analysis which combines TB and BDT, less simplistic models for the LSND effect.

MiniBooNE is presently taking data in antineutrino mode.

SciBooNE will start taking data in June!

Will improve constraints on v_e backgrounds (intrinsic v_e s, improved π^0 kinematics) Will provide important constraints on "wrong-sign" BGs for antineutrino oscillation analysis

Conclusions

- 1. Within the energy range of the analysis, MiniBooNE observes no statistically significant excess of v_e events above background.
- 2. In two independent oscillation analyses, the observed E_v distribution is inconsistent with a $v_u \rightarrow v_e$ appearance-only model.
- 3. Therefore, we set a limit on $v_{\mu} \rightarrow v_{e}$ oscillations at $\Delta m^{2} \sim 1 \text{ eV}^{2}$. The MiniBooNE - LSND joint probability is 2%.

Imperial College London

100

Results: Interpreting Our Limit

There are various ways to present limits:

We will present a full joint analysis soon.

Imperial College London 100 years of living science

Results: Event Overlap

<u>Counting experiment numbers:</u> Track Based Algorithm finds 380 events Boosting Algorithm finds 971 events

However, only 1131 events total, because 220 overlap

- chosen by both algorithms!

Results: Sensitivity Goal

Compared to our sensitivity goal for 5E20 protons on target from 2003 Run Plan

Set using $\Delta \chi^2 = 1.64$ @ 90% CL

MiniBooNE Detector: PMT Calibration

PMTs are calibrated with a laser + 4 flask system

PMT Charge Resolution: 1.4 PE, 0.5 PE PMT Time Resolution: 1.7 ns, 1.1 ns

MO Wascko, HEP Seminar

66 May 11, 2007

Imperial College

MiniBooNE Detector: Cosmic Calibration

use cosmic muons and their decay electrons (Michels)

MO Wascko, HEP Seminar

May 11, 2007 67

Imperial College

Muon tracker

Imperial College London 100 years of living science

Incorporating ν_{μ} Data: μ^+ -Decay ν_e Background

 v_{μ} CCQE events measure the π^+ spectrum, this constrains the μ^+ -decay v_e flux

Ratio Method Constraint:

1. MC based on external data predicts a central value and a range of possible $v_{\mu}(\pi)$ fluxes

2. make Data/MC ratio vs. E_{ν}^{QE} for $\nu_{\mu}CCQE$ data

3. re-weight each possible MC flux by the ratio (2) including the v_{μ} , its parent π^+ , sister μ^+ , and niece v_e

this works well because the ν_{μ} energy is highly correlated with the π^{+} energy

Analysis Strategy: Delta Background

 ν induced interactions that produce single γ s in the final state

Radiative Delta Decay (NC)

(i) Use π^0 events to measure rate of NC Δ production

(ii) Use PDG branching ratio for radiative decay

- 15% uncertainty on branching ratio

Inner Bremsstrahlung (CC)

(i) Hard photon released from neutrino interaction vertex

(ii) Use events where the µ is tagged by the decay e-study misidentification using BDT algorithm.

Measured from 126E6 strobe data triggers: 2.1 ± 0.5 events.

Analysis Overview: Background Summary

Summary of predicted backgrounds for the primary MiniBooNE result (Track-Based Analysis):

Process	Number of Events	
ν_{μ} CCQE	10	
$ u_{\mu}e ightarrow u_{\mu}e$	7	
Miscellaneous ν_{μ} Events	13	
$NC \pi^0$	62	
$NC \Delta \rightarrow N\gamma$	20	
NC Coherent & Radiative γ	< 1	
Dirt Events	17	
ν_e from μ Decay	132	
ν_e from K^+ Decay	71	
ν_e from K_L^0 Decay	23	
ν_e from π Decay	3	
Total Background	358	
$0.26\% \ \nu_{\mu} \rightarrow \nu_{e}$	(example signal) ¹⁶³	

 $\begin{array}{c} Step\\ 1\\ Return the \,\chi^2 \, of the \, data/MC \, comparison \, for\\ a \, set \, of \, diagnostic \, variables \end{array}$

12 variables are tested for TB46 variables are tested for BDT

All analysis variables were returned with good probability except...

TB analysis χ^2 Probability of E_{visible} fit: 1%

This probability was sufficiently low to merit further consideration

In the TB analysis

• We re-examined our background estimates using sideband studies.

 \Rightarrow We found no evidence of a problem

• However, knowing that backgrounds rise at low energy, *We tightened the cuts for the oscillation fit:*

$$E_{v}^{QE} > 475 \text{ MeV}$$

We agreed to report events over the original full range: $E_v^{QE} > 300$ MeV, Step 1: again!

Return the χ^2 of the data/MC comparison for a set of diagnostic variables

Parameters of the oscillation fit were not returned.

Imperial College

100

Step

MC contains fitted signal at unknown level

Imperial College

100

Step 3

Report the χ^2 for a fit to E_{ν}^{QE} across full energy range

TB ($E_v^{QE}>475$ MeV) χ^2 Probability of fit: 99% BDT analysis χ^2 Probability of fit: 52%

Leading to...

Step 4 Open the box...