Ultra-High Energy Cosmic Rays with the Pierre Auger Observatory

PIERRE AUGER OBSERVATORY Juan Miguel Carceller

University College London

November 27, 2020

Introduction

The Pierre Auger Observatory

Recent results

My work

- Risetime Studies
- Machine Learning Studies
- Differences between Data and Simulations

- Search begins motivated by the spontaneous discharge of an electroscope due to external radiation
- Is radiation coming from the Earth or outside?
- First conclusive experiments: balloon flights in 1912 by Victor Hess
- Hess is awarded the Nobel Prize in 1936 for the discovery of cosmic rays

Extensive Air Showers

- When a cosmic ray interacts with an atom or molecule a shower of particles can be produced
- After the first interaction new particles are produced that carry energy and momentum and can interact again or decay
- When the primary has a large energy the shower can extend over several km²: Extensive Air Shower

 10^{11} eV 10^{12} eV 10^{13} eV

Particle Components of Air Showers

muon component

hadronic component

electromagnetic component

Open Questions in Ultra-High Energy Cosmic Rays (UHECRs)

- What is the composition of UHECRs?
 We know they are atomic nuclei
- How are those cosmic rays accelerated to such energies?
- What is their origin?

Multi-Messenger Astronomy

- In your typical picture, cosmic rays are deflected by magnetic fields
- True, but if the cosmic ray has low Z (protons) and very high energy, it needs to travel a very long distance to be significantly deflected
- Proton astronomy?

Introduction

The Pierre Auger Observatory

Recent results

My work

- Risetime Studies
- Machine Learning Studies
- Differences between Data and Simulations

The Pierre Auger Observatory

- Founding fathers: Alan Watson and Jim Cronin
- The Pierre Auger Observatory was completed in 2008 and has been running since then
- The Pierre Auger Collaboration has more than 500 people from 17 countries

The Pierre Auger Observatory

Hybrid detector

- Largest detector of cosmic rays built so far
- 1660 surface detectors located in a triangular array covering 3000 km²
- The array is overlooked by 24 fluorescence telescopes
- Located near Malargüe, in the province of Mendoza in Argentina

The Fluorescence Detector (FD)

- The FD measures the nitrogen fluorescence caused by the interaction between charged particles in the shower with atmospheric nitrogen
- Duty cycle: ~ 15% (clear, moonless nights)
- Light is collected in mirrors then focused in the camera

Shower Reconstruction with the FD

X is the slant depth, measured in g/cm²

$$X(z) = \int_{z}^{\infty} \rho(r(z')) \,\mathrm{d}z'$$

- The plane of the shower is obtained by knowing where the pixels are aiming, need one station at the ground
- The longitudinal profile is fitted with a Gaisser-Hillas function:

$$f_{\rm GH} = \left(\frac{{\rm d}E}{{\rm d}X}\right)_{\rm max} \left(\frac{X-X_0}{X_{\rm max}-X_0}\right)^{\frac{X_{\rm max}-X_0}{\lambda}} e^{\frac{X_{\rm max}-X}{\lambda}}$$

- ▶ Integral \rightarrow Calorimetric energy (resolution of 7 % on E_{FD})
- Position of the Maximum, X_{max} is a very good proxy for mass composition

The Surface Detector (SD)

- Measures the arrival time of secondary particles of the shower at the ground
- > These particles emit Cherenkov radiation in water that can be detected by the photomultiplier tubes
- ▶ Duty cycle ~ 100%

The Surface Detector (SD)

- Measures the arrival time of secondary particles of the shower at the ground
- These particles emit Cherenkov radiation in water that can be detected by the photomultiplier tubes
- ▶ Duty cycle ~ 100%

Shower Reconstruction with the SD

Direction reconstruction

The direction of the cosmic ray is obtained by fitting a spheric plane to the time of arrival of particles at the stations

Resolution better than 1.5°

Energy reconstruction

 The energy is obtained from the lateral distribution of particles

Hybrid detector? Calibration of the energy

- Why is it called hybrid detector?
- Measurements of the energy by the FD are used to calibrate the measurement of the energy in the SD without using simulations
- S(1000) is transformed to its value if the shower had arrived at 38°, S₃₈
- A calibration is performed

$$E_{\rm SD} = A(S(1000)/f_{\rm CIC}(\theta)/{\rm VEM})^B$$

Resolution for the SD: 16 to 12 % depending on the energy

Question: Why are the edges of the detector round?

- Better detector?
- Easier manufacturing?

Well ...

Introduction

The Pierre Auger Observatory

Recent results

My work

- Risetime Studies
- Machine Learning Studies
- Differences between Data and Simulations

A. Yushkov for the Pierre Auger Collaboration Proc. 36th ICRC (2019)

- For a constant composition $D_{10} = \frac{d X_{max}}{d \log(E/eV)} = 60 \text{ g/cm}^2/\text{decade}$
- ▶ $D_{10} = 77 \pm 2 \text{ g/cm}^2/\text{decade between } 10^{17.2} \text{ and } 10^{18.32} \text{ eV}$

▶
$$D_{10} = 26 \pm 2$$
 g/cm²/decade from $10^{18.32}$ eV onwards

- ► Values $\sigma^2 < 0$ are due to models predicting larger $\sigma(X_{max})$ than the observed
- ▶ Similar trend for all the models: ligther mass up to 10^{18.33} eV and then heavier mass
- Results depend on the hadronic interaction model

X_{max} : Composition Implications

• Composition that best matches the distribution of X_{max} in data:

- Fewer p-values were expected below the 0.1 line (bad fits)
- Models can not find a combination of fractions that can reproduce the details of the distributions of X_{max}

Juan Miguel Carceller

Delta Method: Definition

- ▶ Based on the risetime $t_{1/2}$, time for the signal measured by the SD to raise between a 10% and a 50% of the total signal.
- Benchmark: Parameterization of the risetime as a function of the distance to the core
- The final observable is the average over all the stations in each event:

$$\Delta_s = \frac{1}{n} \sum_{i=1}^n \Delta_i$$

Delta Method: Calibration with X_{max}

• Δ_s can be calibrated with hybrid events that have X_{max} : $\frac{X_{\text{max}}}{X_{\text{max}}} = a + b\Delta_s + c \log(E/eV)$

- X_{max} can be measured with the SD up to 100 EeV
- Mass is getting smaller until ~ 2 EeV then rises possibly stopping at the highest energies

18.5

19

19.5 20 log(E/eV)

[g cm.

×

1000

901

800 700 600

504

800

65(60

550

Delta Method: Calibration with X_{max}

Proton-Air Cross-Section

 $\frac{\mathrm{d}N}{\mathrm{d}X_{\mathrm{max}}} \propto e^{\frac{-X_{\mathrm{max}}}{\Lambda_{\eta}}}$

- At the tail of the X_{max} distribution: dX_{max}
- ▶ η is the fraction of most deeply penetrating showers used ($\eta = 0.2$)

 \blacktriangleright Cross-sections are modified in simulations to match Λ_{η} with the following factor

$$F(E, f_{19}) = 1 + (f_{19} - 1) \frac{\log (E/E_{\text{thr}})}{\log (10^{19} \text{ eV}/E_{\text{thr}})}$$

 $\Lambda_{\eta} = [55.8 \pm 2.3(\text{stat}) \pm 1.6(\text{sys})] \text{ g/cm}^2$

R. Ulrich for the Pierre Auger Collaboration Proc. 34th ICRC (2015)

Proton-Proton Cross-Section

Inelastic and total cross-sections are computed using the Glauber model at $\sqrt{s} = 57$ TeV.

Muons in Inclined Events

- Muons dominate the signal in inclined events
- The muon density ρ_{μ} is modeled at the ground point \vec{r} as:

$$\rho_{\mu}(\vec{r}) = N_{19} \ \rho_{\mu,19}(\vec{r};\theta,\phi),$$

Auger dat:

1019

E/eV

▶ N_{19} is studied and simulation and corrected by its bias → R_{μ}

0.8

0.6

0.2

0.0

680

700

720 740 760 780 800 820

 $\langle X_{max} \rangle / g \, cm^{-2}$

(ก¦ ม_ย ม_

 10^{2}

Phys. Rev. D 91, 059901 (2015)

Number of muons 30%-80% higher than what models predict

Juan Miguel Carceller

2.4 2.2

2.0

1.0

Testing Hadronic Interactions

 Simulations that match the longitudinal profile of data are produced

The signal is rescaled to match the signal at the ground in data:

 $S_{\text{resc}}(R_E, R_{\text{had}})_{i,j} \equiv R_E \; S_{EM,i,j} + R_{\text{had}} \; R_E^{\alpha} \; S_{\text{had},i,j}$

Model	R_E	R_{had}
QII-04 p	$1.09 \pm 0.08 \pm 0.09$	$1.59 \pm 0.17 \pm 0.09$
QII-04 Mixed	$1.00 \pm 0.08 \pm 0.11$	$1.61 \pm 0.18 \pm 0.11$
EPOS p	$1.04 \pm 0.08 \pm 0.08$	$1.45 \pm 0.16 \pm 0.08$
EPOS Mixed	$1.00 \pm 0.07 \pm 0.08$	$1.33 \pm 0.13 \pm 0.09$

- No energy rescaling is needed
- Hadronic signal is significantly larger for data than that predicted by models

In the risetime (and therefore Δ) there is a mixture of electromagnetic and muonic component

► The values of Δ can not reproduce X_{max} , coming from the electromagnetic cascade

What did I do?

Introduction

The Pierre Auger Observatory

Recent results

My work

Risetime Studies

- Machine Learning Studies
- Differences between Data and Simulations

Study mass composition using:

- The SD data sample: highest statistics
- Traditional methods & modern methods
The Risetime $t_{1/2}$: Definition

Time it takes for the signal measured in one photomultiplier (PMT) to rise between 10% and 50% of the total signal

• We average over the operating PMTs to obtain a value for $t_{1/2}$ at each station

Why use the Risetime for Mass Composition?

- Showers initiated by a heavier primary have more muons and develop lower in the atmosphere
- Muons have a shorter risetime
- Showers initiated by a heavier primary have a shorter risetime

The Time over Distance ToD: Definition

- t_{1/2} approximately linear with r for a wide range of distances
- A single value for each event is obtained computing the average:

$$\overline{\text{ToD}} = \left\langle \frac{t_{1/2}}{r} \right\rangle = \frac{1}{n} \sum_{i=1}^{n} \frac{t_{1/2_i}}{r_i}$$

- An observable that characterizes each event with a single value
- Does not depend on r

Dependence with $\sec \theta$

- **•** ToD depends linearly on $\sec \theta$
- A fit is done for each energy bin

Juan Miguel Carceller

Risetime Studies

• The value at $\theta = 30^{\circ} (\xi)$ is picked and

$\langle \ln A \rangle$

- \blacktriangleright ξ can be transformed to the logarithm of the mass number A
- Linear interpolation between the lines for simulations

$$\alpha I + (1 - \alpha)P = D \longrightarrow \langle \ln A \rangle = \ln 56 \cdot \alpha = \ln 56 \frac{P - D}{P - I} \leftarrow \begin{cases} P \to \text{Protons} \\ I \to \text{Iron} \\ D \to \text{Data} \end{cases}$$

$\langle \ln A \rangle$: Comparison with the $\langle \Delta \rangle$ Method

- ξ can be transformed to the logarithm of the mass number A
- Linear interpolation between the lines for simulations

$$\alpha I + (1 - \alpha)P = D \longrightarrow \langle \ln A \rangle = \ln 56 \cdot \alpha = \ln 56 \frac{P - D}{P - I} \leftarrow \begin{cases} P \to \text{Protons} \\ I \to \text{Iron} \\ D \to \text{Data} \end{cases}$$

Extensive Air Showers Fluctuations: Motivation

- For any observable, its fluctuations have two contributions: the detector and physics
 σ²_{total} = σ²_{det} + σ²_f
- σ²_f provides information for studies of mass composition, for example fluctuations of X_{max} are larger for proton than for iron
- Using the ToD we measure σ²_f by subtracting the effects of the detector from the total fluctuations

$$\sigma_{\rm f}^2 = \sigma_{\rm total}^2 - \sigma_{\rm det}^2$$

Split the stations of each event into two groups so that we have two independent measurements of the ToD for obtaining σ_{det}^2 :

$\sigma_{\rm det}^2$ Calculation: Analysis of Variance (ANOVA)

ANOVA: total variance has two contributions based on arbitrary division of the data in groups

$$\sigma_{\rm total}^2 = \sigma_{\rm between \ groups}^2 + \sigma_{\rm within \ groups}^2$$

The following equality from ANOVA is general

- x is a vector
- ► ⟨x⟩ is the average of x
- Each group g has n_g elements
- $\langle x^g \rangle$ is the average in the group g
- x_i^g is the *j*-th element of the group g

- > x is the vector of all values of $t_{1/2}/r$
- $\langle x \rangle$ is the average value of $t_{1/2}/r$
- Each g is an event with $n_g = 4$ stations
- $\blacktriangleright \langle x^g \rangle = \overline{\text{ToD}}$
- ▶ x_j^g is $t_{1/2}/r$ for the station *j* and the event *g*

Splitting

ANOVA

- A dependence of the fluctuations with the energy has been tested making a constant fit and a fit of a straight line to the data points
- A maximum likelihood ratio test gives a 3σ with the splitting method and 5σ with ANOVA

Risetime Studies

When plotted together both results are compatible within the uncertainties (values for Anova have been shifted slightly to the right)

Bonus: Uncertainty of the Risetime

We compare σ²_{det} obtained with ANOVA and the parameterization of the uncertainty of the risetime σ_{1/2}
 Groups are chosen as events with two or more stations in bins of 100 m

 $\sigma_{\rm det}^2$ is compatible with the values of the parameterization of the uncertainty of the risetime

Introduction

The Pierre Auger Observatory

Recent results

My work

- Risetime Studies
- Machine Learning Studies
- Differences between Data and Simulations

Why is Knowledge about Muons Important?

- Infer information about mass composition
- Study hadronic interactions
- Help to understand differences between data and simulations

Juan Miguel Carceller

- Earlier times
- Usually spiky

Electromagnetic component

- Later times
- Spread and not very spiky

This information is only known in simulations!

AugerPrime

- There is an ongoing upgrade of the detector
- One scintillator panel will be put on top of each station

Example Traces

- Objective: Predict the temporal sequence of values in the muon trace
- Predictions follow the shape of the total trace
- Predictions capture the spiky shape of the muon trace

Notation

^ for the predicted quantities \widehat{S}^{μ} (integral of the predicted muon trace) S^{μ} (integral of the true muon

trace)

- Total number of free parameters: 87212
- ▶ r, sec θ and $S_1 \dots S_{200}$ are normalized to be between 0 and 1
- ▶ Train with 25% of P, He, O and Fe (EPOS-LHC): +400 000 showers

- We compare the integral of the predicted muon trace $\widehat{S^{\mu}}$ to the integral of the true muon trace S^{μ}
- Mean around zero, standard deviation close to 2 VEM (depends heavily on the zenith angle)

Performance Plots: E

- Unbiased predictions
- Resulution better than 11%

Performance Plots: $\sec \theta$

- Unbiased predictions
- Resulution better than 11%

Juan Miguel Carceller

Machine Learning Studies

Performance Plots: Muon Risetime

- We compare the risetime of the predicted muon trace $t_{1/2}^{\mu}$ with the risetime of the true muon trace $t_{1/2}^{\mu}$
- Mean close to 0, standard deviation less than 100 ns
- A single muon has a risetime of 15 ns and a decay constant of 60 ns

Performance Plots: Other Hadronic Models

The predictions are as good when predicting for simulations done with a different hadronic model

Juan Miguel Carceller

Machine Learning Studies

Two examples of traces for two stations from two different events recorded by the SD

Comparing Data and Simulations: Muon Deficit

- We compare predicted muon signals (at ~ 1000 m, by only picking stations with 1000 m < r < 1200 m) in simulations and hybrid data</p>
- We obtain a muon deficit in simulations for vertical events for the first time
- We compare predicted muon signals in simulations and hybrid data

We fit our data with parameterizations obtained from other experiments, keeping the values of the original parameters

 $\rho_{\mu}(r) = N_{\mu}(C_{\mu}/R_0^2)R^{-\alpha}(1+R)^{-\beta}[1+(r/800\text{m})^3]^{-\delta}$

Comparing to Data from Other Experiments

- We fit our data with parameterizations obtained from other experiments, keeping the values of the original parameters
- The electromagnetic signal is obtained as follows $S^{EM} = S S^{\mu}$

Comparing to Data from Other Experiments

- We fit our data with parameterizations obtained from other experiments, keeping the values of the original parameters
- The electromagnetic signal is obtained as follows $S^{EM} = S S^{\mu}$

Volcano Ranch: Phys. Rev. Lett. 10 146 (1963)

Introduction

The Pierre Auger Observatory

Recent results

My work

- Risetime Studies
- Machine Learning Studies
- Differences between Data and Simulations

Differences between Data and Simulations: Previous Studies

Previous results point to a deficit of muons in simulations

Muons in inclined events

• Only studies the muon signal

 $S_{\rm resc}(R_E,\,R_{\rm had})_{i,j} \equiv R_E ~S_{EM,i,j} + R_{\rm had} ~R_E^{\alpha} ~S_{{\rm had},i,j}$

- Studies data and simulations with the same longitudinal profile
- We study differences without restricting to only the muon signal

Juan Miguel Carceller

Differences between Data and Simulations

- We use the Kolmogorov-Smirnov test (KS) to compare the distributions of data and rescaled signal in simulations
- KS tells us if two samples belong to the same distribution
- Truth: $S = S^{\mu} + S^{EM}$

Find value of α and β that minimize the KS test (data and simulations match)

Stations with $r \simeq 1000$ m

- For each station with $r \in [900, 1100]$ m, the new signal in simulations is $S = \alpha S^{\mu} + \beta S^{EM}$ (S^{μ} and S^{EM} are the Monte Carlo muon and e.m. signal)
- α and β are given values and the best matching is found
- The values of α and β are strongly correlated

Proton → QGSJetII-04

Results with $r \simeq 1000$ m

The rescaling needed is almost always greater than 1

 $S = \alpha S^{\mu} + \beta S^{EM}$

Signals in EPOS-LHC are slightly larger, less correction needed

- Cosmic rays is a fascinating field with a lot to do
- We measure these cosmic rays indirectly with air showers
- On mass composition: mass going to heavier from 10^{18.3} eV onwards
- On hadronic interactions: There are problems with the hadronic models, tuned at the energies of the LHC, more muons in data than in simulations
- Circular problem: To know the mass composition I need good simulations (hadronic models) but to constrain hadronic models I need the composition
- Ongoing upgrade of the Pierre Auger Observatory to solve this
Backup

Description of Air Showers

Heitler-Matthews toy model

- Electromagnetic showers
 - Pair production: A photon produces a pair of an electron and positron
 - Bremsstrahlung: A charged particle emits photons

- Hadronic showers
 - Neutral pions decay to photons and feed the electromagnetic component
 - Charged pions produced more pions (charged and uncharged)

../Images/Heitler.pdf
../Images/Heitler.pdf

- Signals from PMTs come from the high-gain channel and low-gain channel
- Signals big enough will saturate the high-gain channel first and then the low-gain channel

../Saturated-signal/saturated.pdf

Systematic Uncertainties

Juan Miguel Carceller

As sec θ increases the electromagnetic component is attenuated and $t_{1/2}$ decreases

ToD: Systematic Uncertainties and Atmospheric Conditions

Differences with The $\langle \Delta \rangle$ Method

- Old slide with the results obtained using the same simulations and a more similar cut on S
- Results match very well

./Images/page.pdf

Energy Differences

- For data the energy from the SD (E_{SD}) is obtained from the calibration curve given by the FD
- We can not use E_{SD} in simulations to compare to data
- ▶ We use $E_{\rm MC}$ instead as a proxy for $E_{\rm FD}$

 For simulations there is a bias that depends on the composition between the energy from the SD and FD

 $\begin{array}{l} \text{Simulations} \rightarrow \text{MC energy} \\ \text{Data} \rightarrow \text{Energy from the SD} \end{array}$

LSTM Layer

- Output obtained from previous
- Inide torget gate selects from the
- ► Priorients care statanfed from the
- The candidate cell state \tilde{C}_t is built

../Images/lstm-notation.png

$$o_{t} = \sigma(W_{o} \cdot [h_{t-1}, x_{t}] + b_{o})$$

$$h_{t} = o_{t} * \tanh(C_{t})$$

$$\vdots . / \text{Images/lstm-4.png} \quad f_{t}' = \sigma(W_{t}' \cdot [h_{t-1}', t_{t}] \stackrel{\circ}{=} f_{b})$$

$$\vdots . / \text{Images/lstm-3.png} \quad f_{t} = \tanh(W_{t} \cdot [h_{t-1}, x_{t}] \stackrel{\circ}{=} f_{b})$$

$$\vdots . / \text{Images/lstm-2.png}$$

$$\vdots . / \text{Images/lstm-1.png}$$

Training: Loss and Other Metrics

../Images/loss-and-diff.pdf

More Examples of Traces

../Images/hex-energy-dif-mean.pdf

../Images/hex-energy-dif-std.pdf

Performance Plots: Correlation

../Images/cor.pdf

Performance: as a function of S^{μ}

- Mean close to 0
- Performance improved for larger zenith angles

Comparing Data and Simulations: Muon Deficit

> The average muon risetime also points towards a heavier composition than iron

../Images/muon-deficit-and-risetime-data.pdf

Juan Miguel Carceller

Energy equivalence between cosmic rays and accelerators

Invariance of the norm tells us that $(p_1 + p_2)^2 = (p_3 + p_4)^2$ so

$$(E+m)^{2} - E^{2} = 4(E')^{2} \Rightarrow 2mE + m^{2} = 4(E')^{2}$$

$$2E' = \sqrt{2mE}$$
if
$$\begin{cases} m \sim 10^{9} \text{ eV} \\ E \sim 10^{19} \text{ eV} \end{cases} \xrightarrow{\sim \sqrt{2} \cdot 10^{14} \text{ eV}}$$

$$\sim 140 \text{ TeV}$$

$$J(E) = J_0 \left(\frac{E}{10^{18.5} \text{ ev}}\right)^{-\gamma_1} \prod_{i=1}^3 \left[1 + \left(\frac{E}{E_{ij}}\right)^{\frac{1}{\omega_{ij}}}\right]^{(\gamma_i - \gamma_j)\omega_{ij}}$$