Final Higgs Results from the Tevatron

Aidan Robson University of Glasgow UCL, 23 March 2012

$$\begin{aligned} \mathcal{L}_{\text{QED}} &= \overline{\psi}(i\gamma_{\mu}\partial^{\mu} - m_{f})\psi + q\overline{\psi}\gamma_{\mu}A^{\mu}\psi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{1}{2}p_{\gamma}^{2}A_{\mu}A^{\mu} \\ &\downarrow \\ \mathcal{L}_{\text{EWK}} &= \overline{\psi}\gamma_{\mu}(i\partial^{\mu} + g\boldsymbol{\tau}\cdot\mathbf{W} + \frac{g'}{2}YB^{\mu})\psi - \frac{1}{4}B_{\mu\nu}B^{\mu\nu} - \frac{1}{4}\mathbf{W}_{\mu\nu}\cdot\mathbf{W}^{\mu\nu} \\ &+ \frac{1}{2}m_{P}^{2}B_{\mu}B^{\mu} + \frac{1}{2}m_{W}^{2}\mathbf{W}_{\mu}\cdot\mathbf{W}^{\mu} \\ &+ \frac{1}{2}(\partial_{\mu}H\partial^{\mu}H + 2\mu^{2}H^{2}) - \frac{\lambda}{4}(4vH^{3} + H^{4}) \\ &+ \frac{g^{2}}{4}(v^{2} + 2vH + H^{2})W_{\mu}^{-}W^{+\mu} + \frac{g^{2} + g'^{2}}{8}(v^{2} + 2vH + H^{2})Z_{\mu}Z^{\mu} \\ &- \frac{g_{e}}{\sqrt{2}}(v + H)(\overline{\psi}_{L}\psi_{R} + \overline{\psi}_{R}\psi_{L}) \end{aligned}$$

Higgs Physics at the Tevatron

SM Higgs searches

Higgs Physics at the Tevatron

Single experiment sensitivity Feb 2012, $M_{\rm H}$ =125 GeV

	CDF, D0	Atlas, CMS
Η>γγ	10-13xSM	1.5-2xSM
H→WW	~3.5xSM	1-2xSM
H→bb	~2xSM	~3.5xSM

Tevatron

Diboson Physics at I

Sensitivity Projections

Maximize signal acceptance Model all signal and background processes well Use multivariate analysis (MVA) to exploit all kinematic differences

Expect 167 SM Higgs events (reconstructed and selected) and ~200,000 events from SM backgrounds for $m_{\rm H}$ =125 GeV/c²

Improvements since summer 2011

25% more luminosity

- Most recent data
- Use every last pb⁻¹ of data with component specific quality requirements
- New multivariate b-tagger optimized for $H \rightarrow bb$ jets
 - ~20% more acceptance
- Additional triggers and leptons
- Improved dijet invariant mass resolution
- Improved MVA
- Improved modeling

Secondary vertex-finding algorithm Attempt to fit tracks to decay vertex

Jet probability

Compares track impact parameters to measured resolution functions

Neural network filters

n_{tracks} in secondary vertex p_{T} fraction carried by those tracks goodness of vertex fit vertex mass transverse decay length & significance

...

25% improvement in sensitivity (6% expected from luminosity)

Improved b-tagging

In 2010, CDF had 5 b-tagging algorithms with different strengths, weaknesses and applications

Study of tagger performance says that we . . .

- Need maximum acceptance
- Can afford an increase in fake rates

Need multiple operating points

 allows separation of high S/B data (two "tight" tagged jets) and low S/B data (two "loose" tagged jets) into independent analysis channels

- Multivariate, continuous output
- 25 input variables
- Trained with jets from H→bb MC
- Validated with ttbar and soft electron samples

mistag rate	SecVtx efficiency	HOBIT efficiency
~1%	39%	54%
~2%	47%	59%

$WH \rightarrow l \nu bb$

OLD – Multiple Taggers

Tagging Category	S∕√B
SecVtx+SecVtx	0.228
SecVtx+JetProb	0.160
SecVtx+Roma	0.103
Single SecVtx	0.146
Sum	0.331

Tagging
CategoryS/vBTight-Tight0.266Tight-Loose0.200Single Tight0.143Loose-Loose0.053Single Loose0.044Sum0.369

NEW - HOBIT

Significant effort to optimize tagging categories and thresholds for loose/tight HOBIT selections
11% gain in S/VB translates directly into increase in overall search sensitivity

 $WW/WZ \rightarrow \ell \nu j j$

Do we see WZ and ZZ events ?

same final state

same set of tagged events

different MVA optimized for WZ and ZZ events

Higgs Physics at the Tevatron

MVA-based search

SM Prediction = 4.4 +/- 0.3 pb

Higgs Physics at the Tevatron

3

$WH \rightarrow l \nu bb$

Key issue: estimating W+bb background Fraction from MC applied to data. Mistags from inclusive jets.

bottom quark jets improve dijet invariant mass and MET measurements

> Neural network correlates all jet-related variables and returns most probable jet energy based on bottom quark hypothesis – better signal/background separation

MVA improvements

Small MVA improvements in many channels, eg ZH→llbb

Improving ΔR_{\parallel} acceptance

Include region 0.1 < ΔR_{\parallel} < 0.2 and m_{\parallel}<16 GeV

- special Drell-Yan modeling (MADGRAPH)
- new Wγ modeling (MADGRAPH)
- cuts to remove J/ ψ and Υ resonances

Complementarity

- exploit different sensitivities of matrix element / neural net
 - ME is leading order
 - remove variables that use jet information from neural net for comparison
- verify matrix element method: cycle signal $R' = \frac{P_{WW}}{P_{WW} + \sum_{i} k_{b}^{i} P_{b}^{i}}$

Channel	Luminosity	95% CL limit M _H =125 GeV
Η⊸γγ	10.0 fb ⁻¹	10.8 x SM
VH→bb+jets	9.45 fb⁻¹	11.0 x SM
ttH→lv+jets	9.4 fb⁻¹	12.4 x SM
H→ττ+jets	8.4 fb ⁻¹	14.8 x SM

Channel	Luminosity	95% CL limit M _H =150 GeV
H→ZZ→IIII	9.7 fb ⁻¹	9.4 x SM

• Combine 16 analyses, 93 orthogonal channels

What have we found?

CDF combination

- Exclude SM Higgs at 95% C.L. : $147 < m_H < 175 \text{ GeV/c}^2$
- Expect to exclude: $100 < m_H < 106 \text{ GeV/c}^2 \& 154 < m_H < 176 \text{ GeV/c}^2$

Compatible with bck only?

Highest local p-value, 2.6 σ , is found at m_H = 120 GeV/c²

Compatible with SM Higgs?

Consistent with SM Higgs at 1σ level for mass range between 107 and 142 GeV/c^2

How much did things change?

A ~0.5 σ excess in mass range from 115 to 135 GeV/c² has become a ~2 σ excess. How can this happen?

$H \rightarrow WW$

- 18% additional data
- Small signal acceptance improvements ($0.1 < \Delta R_{\parallel} < 0.2$)
- No appreciable change in behaviour of limits

$\text{ZH} \rightarrow \nu\nu\text{bb}$

- 21% additional luminosity
- Small improvements in background rejection
- Limits show same basic behaviour with 0.5 to 1.0σ increases in significance of excess

$WH \rightarrow l \nu bb$

- > 26% (69%) additional luminosity for 2-jet (3-jet) channels
- 5-10% level lepton acceptance/trigger efficiency improvements
- New HOBIT b-tagger equivalent to adding another 20% in additional luminosity
- Limits show same basic behaviour with 1.0 to 1.5σ increases in significance of excess

 $ZH \rightarrow \ell\ell bb$

- 23% additional luminosity
- More gain from HOBIT in this analysis than WH (original tagging not as sophisticated)
- > 56% of data events in current analysis were not included in previous analysis!
- ▶ 37% sensitivity improvement (4.67 → 2.95 at m_{H} =120 GeV/c²)

58

 $ZH \rightarrow \ell\ell bb$

- Muon channels
- See only a slight change in behaviour of limits (~0.5σ)

 $ZH \rightarrow \ell\ell bb$

- Electron channels
- Here we observe a significant change

$ZH \rightarrow \ell\ell bb$

- ► ZH→IIbb channel has . . .
 - Iowest backgrounds
 - smallest expected signal yields (9 events for m_H=120 GeV/c²)
- Some discriminant bins with large S/B
 - Low probability for observing events in these bins
 - A few such events can have substantial effects on observed limits

$ZH \rightarrow \ell\ell bb$

- Examine top 20 events in both channels based on S/B of the discriminant bin in which it is located
- The electron channel contains 12 new candidates within this high score region, while muon channel has 5

 $ZH \rightarrow \ell\ell bb$

- To study the effect of high S/B events on our observed limits, we remove our best new and best two new events from the e⁺e⁻ channel and re-run the limits
- Gives one sigma level changes in the limits at 120 GeV/c²

Global significance of excess

Highest local p-value at m_H = 120 GeV/c² mass resolution of searches, dominated by bb at low mass and WW at high mass, is broad

Estimate LEE of 4 for our entire SM search range from 100 to 200 GeV/c²

Global significance of excess

Highest local p-value at m_H = 120 GeV/c² mass resolution of searches, dominated by bb at low mass and WW at high mass, is broad

Estimate LEE of 4 for our entire SM search range from 100 to 200 GeV/c²

SM Higgs Searches			
Experiment	Local P-value	Global P-value	
CDF	2.6σ	2.1σ	
ATLAS	3.5σ	2.2σ	
CMS	3.1σ	2.1σ	

- Exclude SM Higgs at 95% C.L. : $159 < m_H < 166 \text{ GeV/c}^2$
- Expect to exclude: $157 < m_H < 172 \text{ GeV/c}^2$

Tevatron combination: WZ/ZZ

 σ (WZ+ZZ)= 4.47 +/- 0.64 (stat) +/- 0.73 (syst) pb with approximate significance of 4.6 σ SM Prediction = 4.4 +/- 0.3 pb

Combined Higgs discriminants

Tevatron combined limits

Compatible with bck-only?

Compatible with SM Higgs?

Consistent with SM signal plus background hypothesis over Higgs mass range from 110 to 140 GeV/c²

Highest local p-value is found at $m_{H} = 120 \text{ GeV/c}^2$

Same LEE of 4 for entire SM search range from 100 to 200 GeV/c²

SM Higgs Searches		
Experiment	Local P-value	Global P-value
CDF+D0	2.8σ	2.2σ
ATLAS	3.5σ	2.2σ
CMS	3.1σ	2.1σ

Higgs Physics at the Tevatron

Global significance

- CDF and D0 have significantly increased the sensitivity of their Higgs searches by incorporating the full 10 fb⁻¹ dataset and a wide range of analysis improvements
- We measure σ (WZ+ZZ) with a significance of 4.6 σ and a value compatible with SM
- We observe an excess of Higgs-like events consistent with SM Higgs production in the mass range from 115 to 140 GeV/c².

The global significance of this excess is 2.2σ