Precision Measurements of the Top Mass at CDF

Un-ki Yang The University of Manchester

Particle Physics Seminar at University College London March 2, 2007

Healthy food to make HEP program very strong!

Top Quark

- Discovery of the top quark in 1995;
 Heaviest Fermion (about Au nucleus)
 - Opportunity to study a "free" quark

 Decays before hadronization
 Insight into generation of mass in the Standard Model
 - where does this structure come from?
 - why so heavy?

Very statistics limited

□ D0 and CDF collected approximately 100 pb⁻¹ in Run I (1992-1996)

Why Top Mass?

Constrain new physics (SUSY) with M_{Higgs}

Is it a SM top?

Top Production and Decay

> At the Tevatron, mainly primarily produced in pairs via strong interaction (σ ~7pb: 1 for every 10¹⁰ collisions)

> Top decays as free quark due to large mass ($\tau_{top} \sim 4 \times 10^{-25} \text{ s}$)

l, q

ν**, q**

Dilepton (5%, small bkgds)

- 2 leptons(e/ μ), 2 b jets, missing E_T (2vs)
- Lepton+Jet (30%, manageable bkgds)
 - 1 lepton(e/ μ), 4 jets (2 b jets), missing E_T (1 ν)
- All-hadronic (44%, large bkgds)

6 jets (2 b jets)

Summary of Run I Measurements

> M_{top} in Run I (~100pb⁻¹)

 $M_{top} = 178.0 \pm 4.3 \text{ GeV/c}^2$

> Higgs mass fit $M_{H} = 126_{-48}^{+73} \text{GeV/c}^{2}$

 $M_H < 280 \text{ GeV/c}^2 @95\% C.L$

Run II goals (based on Run I)

$$\Box \delta M_{top} \approx 3 \text{ GeV/c}^2 @2 \text{ fb}^{-1}$$

$$\Box \text{ SM } M_{top}?$$

- Consistency among different channels (non-SM: t->bH+)
- Consistency with Xsection (non-SM X₀, t' contributions) Un-ki Yang, Manchester

CDF at Tevatron

Multi-purpose detector: precision meas. & search for new physics

Great Performance

M_{top} Measurement : Challenge 1

Not a simple calculation of the invariant mass of W(jj) and b!!!

M_{top} Measurement : Challenge 1

Not a simple calculation of the invariant mass of W(jj) and b!!!

- Measured jet energy
 - \neq quark energy from top decay
 - Quarks: showering, hadronization, jet clustering
 - Extra radiated jets

M_{top} Measurement : Challenge 1

Not a just calculation of the invariant mass of W(jj) and b!!!

- Measured jet energy
 - \neq quark energy from top decay
 - Quarks: showering, hadronization, jet clustering
 - Extra radiated jets

 Require excellent jet energy correction and good modeling of extra gluon radiations (40%)

Jet Energy Scale(JES) Uncertainties

Jet Energy Scale(JES) Uncertainties

In-situ calibration: W->jj resonance

Challenge 2

There are two top quarks & not all final states available

Too many combination to construct two top quarks (all jets: 90), missing information in dilepton channel

3 constraints: two M(w)=80.4, one M(t)=M(tb)

B-tagging

B-tag: SecVtx tagger

B-tagging helps!: reduces wrong comb. and improves resolution

Un-ki Yang, Manchester

Top Mass Measurements

Template

- Reconstruct m_t event-by-event
 the best value per each event
- Create "templates" using fully simulated events for different top mass values, and bkgds
- Maximum Likelihood fit using signal+backgrounds templates

Matrix Element

- Calculate probability as top mass for all combinations in each event by Matrix Element calculation

 maximize dynamic information
- Build Likelihood directly from the probabilities
- Calibrate measured mass and it's error using simulated events

Strategy

- Precision & consistency
 - Different channels
 - Different methods (using different information)
- New Physics (bias)

Strategy

- Precision & consistency
 - Different channels
 - Different methods (using different information)
- New Physics (bias)

	Method	Njets		B-tag		JES			Rec.
		Exact	+extra	Yes	No	Wjj+std	Wjj	No	variables
	TMP	4	>4						mt, m _{jj} , Lxy
LJ	ME	4							P(Mt,JES)
	IMP	2	>2						mt, Pt(lep)
	ME	2							P(Mt)
	TMP+MF	6	>6						Mt m
711-0		0	20						ivit, 111 _{jj}

Template Method in lepton+jets

> Event selection

- High-pt central leptons (e,mu): Pt>20 GeV
- 4 jets: Et>15 GeV, |η|<2.0
- Large missing Et > 20 GeV

 $>\chi^2$ kinematic fitter: fully reco. ttbar system

$$\chi^{2} = \sum_{i=l,4 \text{ jets}} \frac{(\hat{p}_{T}^{i} - p_{T}^{i})^{2}}{\sigma_{i}^{2}} + \sum_{j=x,y} \frac{(\hat{p}_{T}^{UE} - p_{T}^{UE})^{2}}{\sigma_{j}^{2}} + \frac{(m_{jj} - m_{W})^{2}}{\Gamma_{W}^{2}} + \frac{(m_{lv} - m_{W})^{2}}{\Gamma_{W}^{2}} + \frac{(m_{bjj} - m_{V})^{2}}{\Gamma_{L}^{2}} + \frac{(m_{blv} - m_{V})^{2}}{\Gamma_{L}^{2}}$$

□ Find m_t that fits event best over all combinations (m_W=80.4 GeV, m_t = m_{t̄})
 □ Reject badly reconstructed event

Signal Templates (m_t, JES)

Reconstructed top mass (m_t) dist. For Mtop = 178 GeV

Backgrounds Templates

Template Results in lepton+jets

40% improvement on JES using Wjj

PRD/PRL with 320pb-1
Toward 2nd publication with 1fb-1

Matrix Element Method in lepton+jets

- Maximize kinematic and dynamic information
- Calculate a probability for a signal and background as a function of the top mass
- Integrate over all the unmeasured quantities convoluting the differential cross-section with the experimental resolutions

$$P(x;M_{top},JES) = \frac{1}{\sigma} \int dq_1 dq_2 f(q_1) f(q_2) d\sigma(y;M_{top}) W(x,y,JES)$$
Differential cross section:
LO ME (qq->tt) only

UFS is a free percentation equation of the by the W((>ii) mass)

- JES is a free parameter, constrained in situ by the W(->jj) mass
- Likelihood used to fit simultaneously M_{top} and JES

$$L(f_{top}, M_{top}, JES) \propto \prod_{i}^{Nevents} \left(f_{top} P_{top,i}(M_{top}, JES) + (1 - f_{top}) P_{bkgd,i}(JES) \right)$$

M.E. results in lepton+jets

Event Selection: b-tag but with exact 4jets (166 events)

 $M_{top} = 170.9 \pm 1.6 \text{ (stat.)} \pm 1.4 \text{ (JES)} \pm 1.4 \text{ (syst.)} \text{GeV} / \text{c}^2$

- Most precise world measurement (Summer 06): 1fb⁻¹
- Toward 2nd publication using 1fb⁻¹

Template using Decay Length (Lxy)

- Uses the average transverse decay length, Lxy of the b-hadrons
- > B hadron decay length \propto b-jet boost \propto M_{top} (>=3jets)

$$M_{top} = 183.9_{-13.9}^{+15.7} \text{ (stat)} \pm 0.3 \text{ (JES)} \pm 5.6 \text{ (syst)} \text{ GeV/}c^2$$

Statistics limited, but can make big contributions at Run IIb, LHC

Comparisons in Lepton+Jets (0.7fb-1)

Measurement	Template	ME	Lxy	
JES	(1.8)	(1.7)	0.3	
Residual	0.7	0.4		
B-jet JES	0.6	0.6		
ISR/FSR	0.5	1.0	1.3	
Bkgd shapes/ normalization	0.5	0.2	3.3	
Generators	0.3	0.2	0.7	
PDFs	0.3	0.1	Data/MC	
Methods	0.3	0.1	<lxy> SF</lxy>	
B-tagging	0.1	0.3	4.2	
Total	1.3	1.4	5.6	

Methods in dilepton

Unconstrained system;

2 neutrinos, but 1 missing E_T observable

Template:

- Assume $\eta(v)$ (or $\phi(v)$, $P_Z(tt)$)
- Sum over all kinematic solutions, and (I,b) pairs, select the most probable value as a reco. M_t

□ Matrix Element:

- Integrated over unknown variables using the LO Matrix Element assuming jet angles, lepton are perfect, and all jets are b's
- Obtain P(Mtop) for signal and backgrounds
- Calibrate off-set in pull and pull width using fully simulated MC

Results in dilepton

- Event selections: 2 leptons (Pt>20), 2jets (Et>15), MET> 25 GeV
- Syst. error is comparable to the stat. error
- ➤Toward 2nd publications with 1fb⁻¹

Template in all-jets

- Template method with fitted M_{top} as observable
- Choose among all possible comb ination of 6 jets using a kinematic fitter
- Event seletion:
 - $E_T / \sqrt{(\Sigma E_T)} < 3 (GeV)^{1/2}$
 - $\Sigma E_T \ge 280 \text{ GeV}$
 - $n_{b-tag} \ge 1$ (b-tag)
 - $6 \le N_{jet} \le 8$
 - Neural Network selection
 to improve S/B = 1/2 (vs 1/8)
- And data-driven background template

$$M_{top} = 174.0 \pm 2.2 (stat.) \pm 4.5 (JES)$$

 $\pm 1.7 (syst.) GeV / c^{2}$

New $M_{top} = 171.1 \pm 3.7 (stat. + JES)$ $\pm 2.1 (syst.) \, GeV / c^2$

Comparisons of all channels

Measurement	Letpton+Jets (ME)	All-jets (ME+TMT)	Dileptons (ME)
Mtop	170.9	171.1	164.5
JES	(1.6)	(2.4)	3.4
Signal	1.1	1.7	0.7
Backgrounds	0.2	1.0	0.9
Others	0.5	0.8	1.3
Total Syst.	1.9	2.1	3.9
Statistical	1.6	2.8	3.9
Total	2.5	4.3	5.5

Combining M_{top} Results

Are the channels consistent ?

Summer 2006 Mtop(All Jets) = $172.5 \pm 4.4 \text{ GeV/c}^2$ Mtop(Dilepton) = $163.6 \pm 5.1 \text{ GeV/c}^2$ Mtop(Lep+Jets) = $171.2 \pm 2.5 \text{ GeV/c}^2$

Any systematic shift?
 Missing systematic?
 Bias due to new physics signal?

Tevaron Average

Constraint on Higgs

> A Precision EWK Fit

 $M_{H} = 85_{-28}^{+39} \text{GeV/c}^{2}$ $M_{H} < 166 \text{ GeV/c}^{2} @ 95\% C.L$ $M_{H} = 80_{-26}^{+36} \text{GeV/c}^{2}$ $M_{H} < 153 \text{ GeV/c}^{2} @ 95\% C.L$

- ➢ Direct search(LEP): M_µ > 114 GeV
- Indicates Higgs is light where Tevatron sensitivity best!

Most precise world measurement

Summary and Future

- Achieved 1.2% precision (surpassed Run IIa goal using only 30% data): strong constraint on the Higgs
- With full Run-II dataset, able to achieve
 δMtop to < 1 GeV/c²
- Will be one of the lasting legacies of the Tevatron
- Many developed tools for LHC

Few Lessons from Tevatron

- A major JES uncertainty is greatly reduced by the Wjj in-situ calibration (50% improvement with 1fb-1 data)
- ➢ B-jet specific uncertainty is small (<0.7 GeV)</p>
 - Heavy-quark fragmentation
 - Color-interference (under reinvestigation)
 - Semi-leptonic decay
- Good b-tagger is important
- Effect of the higher order (NLO) is small at the Tevatron (<0.5 GeV)</p>
- qq vs gg events have different kinematics
 (2 GeV difference in top mass: CDF, but only gg 15% events)
- Effect of the multiple interaction is small
- Effect of the backgrounds is small (except all-jets channel)

Syst. : ISR/FSR/NLO

- Method in hand to use Drell-Yan events to understand and constrain extra jets from ISR
 - Constraint scales
 - with luminosity
 - □ Easily extendible to FSR.

MC@NLO sample shows no add'l N LO uncertainty is needed.

CDF and Tevatron Summary

Un-ki Yang, Manchester

Mass vs Cross Section

Un-ki Yang, Manchester