Determination of γ from *B[±]*→*DK[±]***:** LHCb and CLEOcJim Libby (University of Oxford)

Outline

Motivation for the precise determination of γ ■ LHCb –– Overview –– Status Measuring ^γ with *^B[±]*→*DK[±]* at LHCb **Examplementary measurements of D** decay at CLEO-c

Flavour physics

Flavour physics has been essential to formation of the Standard Model:

- **GIM mechanism** [→] **charm**
- **CP Violation** [→] **3 generations**
- **B mixing** [→] **heavy top**

All surprises that predated'direct' discovery!

We may assume same story will continue!

Precise measurements ⇒nature of new physics at multi-TeV scale

In B physics goal is to look for new sources of CP violation, or deviations from SM in very rare CP conserving processes, eg. $BR(B_s\rightarrow \mu\mu)$

1st February 2008

CP violation in weak decays of quarks

- \blacksquare CP violation implies differences between matter and antimatter
- \blacksquare In the Standard Model the weak and flavour eigenstates of the three generations of quarks are related by a unitary matrix
- **A** complex phase introduces CP violating effects \mathbb{R}^2
- \mathbb{R}^2 **Represented in terms of the Unitarity Triangle**

$$
\mathbf{V}_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \propto e^{i\gamma} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} \propto e^{i\beta} & V_{ts} & V_{tb} \end{pmatrix}
$$

All sides and angles can be measured in *b***-hadrondecay**

Searching for new physics

- \blacksquare Non Standard Model particles contribute within the virtual loops
- Differences between tree-level and \blacksquare loop-level triangles
	- –**- Signature of new physics**
- п Complements direct searches

1st February 2008

8 State of the Contract of the UCL Seminar State of the Contract of the Contract of the Contract of the State o
State of the Contract of the C

LHC Status

•Last dipole lowered April 26th this year! (First was in March 2005) •Last interconnect – Nov 2007•Quad triplet remediation – Sep 2007

Latest official schedule had beam commissioning beginning in May '08, with then 2 months estimated before first 14 TeV collisions

Since then, there have been problems,eg. wit<u>h shielding bellows in co</u>ld interconnects

1st February 2008

Warm up of sector 7-8

UCL Seminar 6 and 100 minutes of the Contract of the Contract

Status of the LHC Machine

The LHCb Experiment

- □ Dedicated experiment for precision measurement of CP violation and rare decays of b-hadrons (and charm) at the LHC \Box
- **D** Collider-mode operation at same time as the general-purpose detectors,
with less-focused beams → most events have a single pp interaction \Box \rightarrow most events have a single pp interaction

LHCb in a slide

- $\mathcal{L}_{\mathcal{A}}$ *pp* collisions at a centre of mass energy of 14 TeV– ¹⁰¹²*bb*/year
- П Ring Imaging Cherenkov detectors
	- hadron ID for momentum from 2 to 100 GeV/c

- \blacksquare First level hardware trigger rate from 10→1 MHz
	- 10 MHz the rate of bunch crossings with 1 or more interaction
	- –Bunch crossing rate 30 MHz (offset interaction point)
- \mathcal{L} Software Higher Level Trigger (HLT):
	- inclusive and exclusive selections to reduce storage rate to 2 kHz

8 Studies and the second s

Si Vertex Locator (VELO)

1st February 2008

- m 21 stations of Si wafer pairs with r and ϕ strip readout
- \blacksquare Split in two halves to allow retraction from beam line
	- When closed 8 mm from beam
- \blacksquare Both detector halves now installed in the pit

RICH

 \blacksquare \blacksquare 1024 nivels \blacksquare I HCh development \blacksquare^{11} Readout: Hybrid PhotoDiodes HPD 1024 pixels – LHCb development

1st February 2008 UCL Seminar 2008 Status: RICH2 ready: full DAQ exercisedRICH1: full commissioning early 2008

 $\pi\pi$ invariant mass

TriggerF<mark>ull bandwidth for flavour unlike GPDs</mark>

Hardware trigger (L0)

 \triangleright Fully synchronized (40 MHz), 4 μ s fixed latency

 \triangleright High p_τ particles: μ, μμ, e, γ and hadron

 \ge (typically p_t ~1-4 GeV/c)

1 MHz (readout of all detector components)

Software trigger (HLT)

- > Full detector info available, only limit is CPU time
- > Use more tracking info to re-confirm L0+high IP
- > Full event reconstruction: exclusive and inclusive streams tuned for specific final states

 LO HLT and L0×HLT efficiency

PC farm of ~1000 nodes (multicore)

1st February 2008≤ 2 kHz (storage: event size ~35kB)

8 September 2005 - De Louis Command and De Louis Command and Communication of the Communication of the Communication
13 September 2006 - Communication of the Communication of the Communication of the Communication of the C

View of the cavern

Introduction *B[±]*→*DK[±]*

 \mathbb{R}^2 ■ B→*DK* decays involve <mark>b→c</mark> and b→u transitions

- Access γ via interference if D⁰ and \overline{D}^0 decay to the same final state
- \blacksquare These measurements are theoretically clean
	- No penguin ⇒CKM standard candle
– Jargest correction is sub-degree from
	- largest correction is sub-degree from D-mixing
- \blacksquare LHCb looking at a number of strategies to study such decays
	- ^B⁺: Atwood-Dunietz-Soni ('ADS'), 3 and 4 body Dalitz Plot Anal.

 $A(B^{-} \rightarrow$

Strong phasedifference

$$
B^{\pm} \rightarrow D(K^0 \pi^+ \pi^-) K^{\pm}
$$
\nFor $B^+ \rightarrow D(K^0 \pi^+ \pi^-) K^+$
\n
$$
A^- = f(m_+^2, m_+^2) + r_B e^{i(\gamma + \delta)} f(m_+^2, m_+^2)
$$
\n
$$
B^+ = f(m_+^2, m_-^2) + r_B e^{i(\gamma + \delta)} f(m_+^2, m_+^2)
$$
\n
$$
B^+ = K_s^0 \pi^{\pm}
$$
 invariant mass and $f(m_+^2, m_+^2)$ Dalitz amplitudes
\nAssume isobar model (sum of Breit-Wigners)
\nNumber of resonances
\nRel. BW
\n
$$
f(m_+^2, m_-^2) = \left[\sum_{j=1}^N a_j e^{i\alpha_j} A_j (m_+^2, m_-^2) \right] + be^{i\beta}
$$
\n
$$
f(m_+^2, m_-^2) = \left[\sum_{j=1}^N a_j e^{i\alpha_j} A_j (m_+^2, m_-^2) \right] + be^{i\beta}
$$
\n
$$
F^*(B^0 \pi^0) = \pi^{\pm}
$$
\n
$$
F^*(B^0
$$

 B^{\pm} →*D(K⁰_Sπ⁺π[−])K[±]*

Absence of CP violation: distributions would be identical

Simulated LHCb data

8 Studies and the control of the UCL Seminar and the control of the cont

Current e⁺e− results

 \blacksquare Current best direct constraints on γ : PRD 73, 112009 (2006)hep-ex/0607104

 $B_3 = (53^{+15}_{-18} (stat) \pm 3 (syst) \pm 9 (model))^{\circ}$ [Belle] $=$ (33 \rightarrow (SPAL) \pm 3(SVSL) \pm 9(TOOPL)) $=(53^{+15}_{-18}(\text{stat}) \pm 3(\text{syst}) \pm$

 $(92 \pm 41 \text{(stat)} \pm 11 \text{(syst)} \pm 12 \text{(model)})^{\circ}$ [BABAR] $\phi_3 = (53^{+15}_{-18} \text{(stat)} \pm 3 \text{(syst)} \pm 9 \text{(model)})^{\circ}$ [B
 $\gamma = (92 \pm 41 \text{(stat)} \pm 11 \text{(syst)} \pm 12 \text{(model)})^{\circ}$

- \blacksquare Based on \sim 300 events each (\sim 1/3 of final data set)
- П However, large error from isobar model assumptions
- \blacksquare ■ BABAR and Belle use large samples of flavour tagged $D^{*+}{\rightarrow}D^0\pi^+$ events to find parameters of the isobar model
	- Excellent knowledge of |*f*|² but phases less well known
- \blacksquare Model uncertainties from assumptions about the resonance
structures in the model

Isobar model uncertainty

 \blacksquare

BABAR (PRL 95 121802,2005)

 Most challenging aspects of the model uncertainty come from K π and $\pi\pi$ Swave

Fit to flavour tag sample

B^{\pm} →*D(K⁰_S* π *⁺* π *⁻)K[±] at LHCb^{<i>i*}

Simulation studies performed to determine the expected yields and backgrounds at LHCb

- – $-$ One `nominal' year of data-taking 2 fb⁻¹
- – $-$ Total luminosity goal 10 fb⁻¹
- Selection studies performed on PYTHIA/EVTGEN/GEANT4 simulated samples of signal and background events

Limited statistics available for background estimates
— 34 million b-inclusive events corresponds to \approx 15

- $-$ 34 million *b*-inclusive events corresponds to \sim 15 minutes of data taking at nominal luminosity
- \blacksquare Trigger simulation is applied for Level-0 and large impact parameter with p_t HLT

B^{\pm} →*D(K⁰_S* π *⁺* π *⁻)K[±] at LHCb*

- Selection based on large impact parameter, RICH particle ID and good p resolution
- \mathbb{R}^2 \blacksquare Efficiency = 0.7 $\times10^{-3}$
- **Backgrounds:**
	- B^{\pm} → $D(K^0{}_S\pi^+\pi^-)\pi^{\pm}$ B/S=0.24
	- Combinatoric
——————————————————— B/S<0.7 at 90% c.l.

(LHCb-048-2007)

Model uncertainty impact on LHCb

- \blacksquare The model-dependent likelihood fit yields an uncortainty on whotwoon 7.12% for an wealth uncertainty on γ between 7-12° for an $r_{\rm B}{=}0.1$
Barge represents differing assumptions about the backgrou – Range represents differing assumptions about the background
- However, the current model uncertainty is 10-
15° with an $r_{\scriptscriptstyle D}$ =0.1 15 \degree with an r_B =0.1

 $-$ Uncertainties ∝1/ r_B

- Without improvements LHCb sensitivity will be dominated by model assumptions
within 1 year of data taking
- u Motivates a model-independ Motivates a model-independent method that relies on a binned analysis of the Dalitz plot
	- $\mathcal{L}_{\mathcal{A}}$ – Disadvantage is that information is lost via
binning

Binned method

- \blacksquare Proposed in the original paper by Giri, Grossman, Soffer and Zupanand since been extended significantly by Bondar and Poluektov
	- GGSZ, PRD 68, 054018 (2003)
	- BP, most recently arXiv:0711.1509v1 [hep-ph]
- \mathbb{R}^2 Bin the Dalitz plot symmetrically about m_²= m₊² then number of entries in B[−] decay given by:

∝ # events in bin of flavour tagged D⁰ decays

$$
N_{i}^{-} \propto \int_{D_{i}} \left| f(m_{-}^{2}, m_{+}^{2}) \right|^{2} dD + r_{B}^{2} \int_{D_{i}} \left| f(m_{+}^{2}, m_{-}^{2}) \right|^{2} dD
$$

+2\sqrt{\int_{D_{i}} \left| f(m_{-}^{2}, m_{+}^{2}) \right|^{2} dD \int_{D_{i}} \left| f(m_{+}^{2}, m_{-}^{2}) \right|^{2} dD \left(x_{-} \tilde{c}_{i} + y_{-} s_{i} \right)}
Average cosine and
 $x_{\pm} = r_{B} \cos(\delta_{B} \pm \gamma)$ $y_{\pm} = r_{B} \sin(\delta_{B} \pm \gamma)$
'Cartesian coordinates'
 $y_{\pm} = r_{B} \sin(\delta_{B} \pm \gamma)$
 $y_{\pm} = r_{B} \sin(\delta_{B} \pm \gamma)$
 $y_{\pm} = r_{B} \sin(\delta_{B} \pm \gamma)$

1st February 2008

 UCL Seminar 23 UCL Seminar 23 UCL Seminar 23 UCL VCL VCL **between D0 and D0 decay amplitudes** $(\Delta \delta_{\rm D})$ in this bin

Binned method continued

- \blacksquare Can determine s_i and c_i at the same time as extracting $γ, r_B$ and $δ_B$ from *B* data
	- 3 + N_{bins}free parameters (c_i =c_{-i} and s_i =−s_{-i})
	- Huge loss in γ sensitivity not
practical until you have O(10⁶)
events (2500/fb⁻¹ @ LHCb)
- **Example 20 However, CP-correlated** *e*⁺*e*[−]→ ψ"→D⁰D⁰ data where
one decay is to *K_Sππ* and the
other decays to a CP eigenstate and $K_{\textrm{\tiny{S}}} \pi \pi$ allows $\text{c}_{\textrm{i}}$
and s_i to be determined, and s_i to be determined,
respectively

Enter CLEO-c

CLEO is the grand-daddy of flavour physics, with history of achievementdating back over 25 years

CLEO-c is latest incarnation.Dedicated programme of data-takingat and above the $c\overline{c}$ threshold \overline{c} **Important studies for LQCD and B physics**

Oxford LHCb physicists (with Bristol) have joined CLEO-c in order to measure quantities essential for the γ **studies**

Cornell University, Ithaca NY, USA

CLEO-c detector

CLEO-c data samples

CLEO-c: Oct. 2003 – April Fool's Day 2008 <mark>3686MeV</mark>, 54 pb⁻¹, N(ψ(2S))≈27M e+e−→ ψ(**2S)** → ππ J/ψ, _{Υχc} etc.
2772MeV, 200pb-1 delivered ..? milion *w (2770) .. DD0* 3773MeV, 800pb⁻¹ delivered, \sim 3 milion $\psi(3770) \rightarrow$ D⁰D⁰ 4170MeV, 195 pb⁻¹ → ~ 300pb⁻¹ →more→ ~720pb⁻¹, $D_{(s)}^{(\ast)}\overline{D}_{(s)}^{(\ast)}$

CLEO-c: double tagged ψ(3770) events

 $\textsf{CLEO-c}$ has collected ~ 800 fb⁻¹ at the ψ (3770) DDbar produced in quantum entangled state:

$$
e^+e^- \to \psi'' \to \frac{1}{\sqrt{2}} \left[D^0 \overline{D}^0 - \overline{D}^0 D^0 \right]
$$

Reconstruct one D in decay of interest for γ analysis (eg. K $\pi\pi$), $\,$ & other in CP eigenstate (eg. KK, $K_s\pi^0$...) then CP of other is fixed.

Inkblot test

- \blacksquare Bondar and Poluektov show that the rectangular binning is far from optimal for both CLEOc and γ analyses
	- –- 16 uniform bins has only
6006 of the B statistical 60% of the B statistical sensitivity
	- – $-$ c and s errors would be 3 times larger from the ψ''
- \blacksquare Best B-data sensitivity when cos(∆δ_D) and sin(∆δ_D) are as uniform as possiblewithin a bin

Absolute value of strong phase diff.(BABAR model used in LHCb-48-2007)

Good approximation and the binning that yields smallest s and c errors is equal $\Delta\delta_{\rm D}$ bins-80% of the unbinned precision $\frac{2\pi(i-\frac{1}{2})}{N} < \Delta \delta_D(m_+^2, m_-^2) < \frac{2\pi(i+\frac{1}{2})}{N}$

Implementation at LHCb

- \blacksquare Generate samples of *B*± 5000 events split between the $\pi \rightarrow D(K^0{}_S\pi\pi)K^\pm$ with a mean of $|$ charges
- \blacksquare Bin according to strong phase difference, $\Delta \delta_{\rm D}$ ⇒
- \blacksquare \blacksquare Minimise χ 2

$$
\chi^2 = \sum_{i=-8(i\neq 0)}^8 \left[\frac{(n_i^+ - N_i^+(x_+, y_+, h))^2}{n_i^+} + \frac{(n_i^- - N_i^-(x_-, y_-, h))^2}{n_i^-} \right]
$$

\n
$$
n_i^{\pm} = \text{number of } B^{\pm} \to D(K_S^0 \pi^+ \pi^-) K^{\pm} \text{ events in } i^{\text{th}} \text{ bin}
$$

\n
$$
N_i^{\pm}(x_{\pm}, y_{\pm}, h) = h[K_{\pm i} + r_B^2 K_{\mp i} + 2\sqrt{K_i K_{-i}} (c_i x_{\pm} \pm s_i y_{\pm})]
$$

\n
$$
h = \text{normalization factor}
$$

\n
$$
K_{\pm i} = \int_{D_i} \left| f(m_+^2, m_-^2) \right|^2 dD \text{ [measured from flavour tag data]}
$$

× \bullet K_i, c_i and s_i amplitudes
calculated from model

In reality from flavour tagged samples and CLEO-c

l $\overline{}$

γ uncertainties with 5000 toy experiments

B^{\pm} →*D(K⁰_Sπ⁺π[−])K[±] at LHCb*

- Model independent fit with binning that yields smallest error
from exploiting CLEO-c data
	- Binning depends on model only consequence of incorrect model is non-optimal binning and a loss of sensitivity

- \blacksquare Measurement ha and outperforms model-dependent approach with full LHCb dataset with currently assigned model error
	- 10 fb-1 statistical uncertainty 4-6**°** depending on background
- **CLEO-c measurements essential to validation of**
conventions in model dependent measurement assumptions in model dependent measurement
- П ■ LHCb-2007-141 – Available via CERN document server

8 September 2008 Seminar 2008 Seminar 33 September 2008 Seminar 33 September 2008 September 2008 September 200

1st February 2008

ADS method

 \blacksquare **Look at DCS and CF decays of D to** $r_B e^{i(\delta - \gamma)}$ $\overline{D}K$ rates that have enhanced interference terms of \mathbf{D}

$$
\frac{DK}{B} = \frac{DK}{\Delta}\frac{r_{D}e^{i\delta_{D}}}{K^{+}\pi^{K}}
$$
\n
$$
r_{B}e^{i(\delta-\gamma)}\overline{D}K^{-}
$$

$$
\Gamma(B^{-} \to (K^{-}\pi^{+})_{D} K^{-}) \propto 1 + (r_{B}r_{D}^{K\pi})^{2} + 2r_{B}r_{D}^{K\pi} \cos(\delta_{B} - \delta_{D}^{K\pi} - \gamma),
$$

\n
$$
\Gamma(B^{-} \to (K^{+}\pi^{-})_{D} K^{-}) \propto r_{B}^{2} + (r_{D}^{K\pi})^{2} + 2r_{B}r_{D}^{K\pi} \cos(\delta_{B} + \delta_{D}^{K\pi} - \gamma),
$$

\n
$$
\Gamma(B^{+} \to (K^{+}\pi^{-})_{D} K^{+}) \propto 1 + (r_{B}r_{D}^{K\pi})^{2} + 2r_{B}r_{D}^{K\pi} \cos(\delta_{B} - \delta_{D}^{K\pi} + \gamma),
$$

\n
$$
\Gamma(B^{+} \to (K^{-}\pi^{+})_{D} K^{+}) \propto r_{B}^{2} + (r_{D}^{K\pi})^{2} + 2r_{B}r_{D}^{K\pi} \cos(\delta_{B} + \delta_{D}^{K\pi} + \gamma)
$$

\n
$$
\Gamma(B^{-} \to (h^{+}h^{-})_{D} K^{-}) \propto 1 + r_{B}^{2} + 2r_{B} \cos(\delta_{B} - \gamma)
$$

\n
$$
\Gamma(B^{+} \to (h^{+}h^{-})_{D} K^{+}) \propto 1 + r_{B}^{2} + 2r_{B} \cos(\delta_{B} + \gamma)
$$

\n
$$
\Gamma(B^{+} \to (h^{+}h^{-})_{D} K^{+}) \propto 1 + r_{B}^{2} + 2r_{B} \cos(\delta_{B} + \gamma)
$$

- Unknowns : r_B~0.1, δ_B, δ_D^{Kπ}, γ, N_{Kπ}, N_{hh} (r_D=0.06 well measured)
- With knowledge of the relevant efficiencies and BRs, the normalisation constants ($\mathsf{N}_{\mathsf{K}\pi}$, N_{hh}) can be related to one another
- Important constraint from CLEOc σ(cos $\delta_{D}^{K\pi}=0.1-0.2$
- \blacksquare Overconstrained: 6 observables and 5 unknowns

Expected yields

ADS measurement is a counting experiment - but
suppressed modes have $\sim 10^{-7}$ BRs

- Princinal challenge hackground sunnr - Principal challenge background suppression
- **Detailed selections studies as for Dalitz analysis**
	- –— LHCb-2006-066
—

 The suppressed modes have yields varying from 0 to 500 depending on the strong parameters–780 background events predicted

Sensitivity from 2-body

 δ_D = -25º – fit results from 1000 toy 2 fb⁻¹ experiments :

 $\delta_{\rm D}$ constraint leads to \sim a 0.5-1.0° reduction in $\sigma_{\rm v}$

Also important for D mixing measurements

Four-body ADS

- **■** *B*→*D(K πππ)K* can also be used for ADS style analysis \mathbb{R}^2
- Similar yields to 2-body slightly worse B/S
	- LHCb-2007-004
- However, need to account for the resonant substructure in *D→Κπππ* п
	- made up of *^D*→*K**ρ*, K[−]a1*(1260)+,.,…
	- in principle each point in the phase space has a different strong phase associated with it 3 and 4 body Dalitz plot analyses exploit this very fact to extract γ from amplitude fits
- Atwood and Soni (hep-ph/0304085) show how to modify the usual ADS equations for this case
	- Introduce coherence parameter $\mathbf{R}_{\mathbf{K3n}}$ which dilutes interference term sensitive to γ

$$
\Gamma(B^{-} \to (K^{+}\pi^{-}\pi^{-}\pi^{+})_{D} K^{-}) \propto r_{B}^{2} + (r_{D}^{K3\pi})^{2} + 2r_{B}r_{D}^{K3\pi}(R_{K3\pi})\cos(\delta_{B} + \delta_{D}^{K3\pi} - \gamma)
$$

\blacksquare ■ *R_{K3π}* ranges from

- \blacksquare 1=coherent (dominated by a single mode) to
- 0=incoherent (several significant components)
- m 1 Can slice and dice phase space to find most coherent regions

1st February 2008

8 Studies and the second s

Determining the coherence factor

- **Measurements of the rate of K3** π versus different tags at CLEO-c allows direct access to $\text{R}_{\text{K3}\pi}$ and $\delta_{\text{K3}\pi}$
- 1. Normalisation from CF K− $\pi^+ \pi^-\pi^-$ vs. K⁺ $\pi^- \pi^-\pi^+$ and K− $\pi^+ \pi^-\pi^-$ vs. K⁺ π^-
- 2. CP eigenstates: $\Gamma(K3\pi : CP\pm) = \Gamma_{K3\pi}^{CF} \Gamma_{CP} \left[1 + \left(r_D^{K3\pi} \right)^2 \mp 2 r_D^{K3\pi} R_{K3\pi} \cos \delta_D^{K3\pi} \right]$ 3. **K**⁻π⁺π⁺π⁻ vs. **K**⁻π⁺π⁺<u>π⁺_π⁻: $\left[\Gamma(K^{-3}\pi: K^{-3}\pi) = \Gamma_{K3\pi}^{CF} \Gamma_{K3\pi}^{DCS} \left[1 - R_{K3\pi}^{2}\right]$ </u> **.**
. |
|
|-
- 4. $K^-\pi^+\pi^+\pi^-$ vs. $K^-\pi^+$: ($\Gamma(K^-3\pi: K^-\pi) \approx \Gamma_{K3\pi}^{CF} \Gamma_{K3\pi}^{DCS} \left[1 + \left(\frac{r_D^{K3\pi}}{r_D^{K\pi}}\right)^2 + 2\frac{r_D^{K3\pi}}{r_D^{K\pi}} R_{K3\pi} \cos \delta_D^{K3\pi}\right]$

1st February 2008

Conclusion-LHCb

- LHCb has estimated 2 fb-1 sensitivity to ^γ in *B[±]*→*DK[±]* with
	- بر است.
براس المسلمان *^D*→*^K0S*π*+*π*[−] -* ^σ^γ **=7-12°**
	- *^D*→*K[−]*π*⁺*and *D*→*h+h[−] -* ^σ^γ **=7.5-9.5°**
	- *^D*→*K[−]*π+π+π[−] will add additional information
- Not the whole story with theoretically clean measurements:
	- *^B⁰*→*DK** σ^γ **~ 9°** [LHCb-2007-050]
	- *^Bs*[→]*Ds^K* ^σγ**+**φ**^s~ 10°** [LHCb-2007-041]
- CLEO-c measurements essential to fulfilling this goal
- Combined: a few degree precision on γ by the
end of LHCb
- Current world average: 77±31° (CKMfitter)

Additional slides

Aside: K-matrix

- \blacksquare ■ Breit Wigner description of broad
overlapping resonances violates
unitarity and requires non-physical σ´
- \blacksquare K-matrix description preserves unitarity
- \blacksquare First studies (Lauren Martin/JL) of
LHCb γ fit with one K-matrix LHCb γ fit with one K-matrix
parameterisation of the $\pi\pi$ S-wave
	- Difference between assuming Kmatrix and BW model consistent with B-factory observations
	- Draft available from CPWG webpage
- \mathcal{A} Explore different physical K-matrix parameterisation to evaluate systematic rather than introduce σ' will reduce model uncertainty

No background with predicted 2 fb-1 yield

γ **(**°**)20 30 40 50 60 70 80 90 100**Entries/2° **Entries/2 100200300400500Mean 60.49RMS 7.854 (**°**)** γ σ**0 2 4 6 8 10 12 14 16 18 20 Entries/0.5 0100200300400500600700800900**0 Mean 7.771
 Mean 7.771 RMS 1.268γ **Pull** $\left[\frac{3}{2} \right]$ **1** $\left[\frac{1}{2} \right]$ **1** $\left[\frac{2}{2} \right]$ **1** $\left[\frac{3}{2} \right]$ **1** $\left[\frac{4}{2} \right]$ **1** $\left[\frac{4}{$ **Entries/0.2 0 50100150200250300350400 Mean 0.04484 RMS 1.048** γ $\sigma(\gamma)$ $\sigma^{(\gamma)}$ Pull

1st February 20088 and the second se Model independent average uncertainty 7.9°(c.f. Mod el dependent 5.9°)

5000 experiments

Input parametersγ=60°, r_B=0.1 and $\delta_{\rm B}=130^{\circ}$

No background with predicted 2 fb-1 yield

5000 experiments

Input parametersγ=60°, r $_{\rm B}$ =0.1 and $\delta_{\rm B}$ =130°

The four Cartesian coordinates and normalization are free parameters

All pulls are normal therefore calculate $γ$, r_B and $\delta_{\rm B}$ with propagated Cartesian uncertainties

1st February 2008

8 Studies and the control of the UCL Seminar and the control of the cont

Toy experiment results: γ **(2 fb−1)**

Toy experiment results: γ **(10 fb−1)**

Toy experiment results: rB (2 fb−1)

Toy experiment results: rB (10 fb−1)

Background

- П 3 types of background to consider
	- $-$ *B→D(K_Sππ)π* (B/S = 0.24)
		- ^rB(Dπ) O(10-3) so Dalitz plots are like *^D⁰* and *^D⁰* for *^B[−]* and *^B⁺*, respectively
	- Combinatoric (B/S<0.7)-mixtures of two types considered –
		- 1. DK_{comb}: real $D \rightarrow D(K_S \pi \pi)$ combined with a bachelor *K*
Delity what are averaging of D^0 and $\overline{D^0}$ decays -Dalitz plot an even sum of *D⁰* and *^D⁰* decays
		- 2. PS_{comb}: combinatoric *D* with a bachelor *K* -Follows phase space
- П Integrate background PDFs used in model-dependent analysis over each bin, then scaled to background level assumed:

$$
N(D\pi)^{\pm}_{i} \propto \varepsilon_{\pm i} K_{\pm i}
$$

$$
N(DK_{comb})^{\pm}_{i} \propto \frac{1}{2} (\varepsilon_{\pm i} K_{\pm i} + \varepsilon_{\mp i} K_{\mp i})
$$

$$
N(PS_{comb})^{\pm}_{i} \propto P_{i}
$$

fractional area of Dalitz space covered by bin

1st February 2008

8 Studies and the second s

Systematic related to acceptance

- \blacksquare **The acceptance varies over the Dalitz plane**
- The relative acceptance in each bin can be measured using the B \rightarrow Dπ \blacksquare control sample with DK selection applied without bachelor K PID

$$
\varepsilon_{i} = \frac{\int_{D_{i}} \left| f(m_{+}^{2}, m_{-}^{2}) \right|^{2} \varepsilon(m_{+}^{2}, m_{-}^{2}) dD}{K_{i}} \propto \frac{N(B \to D(K_{S}^{0} \pi \pi) \pi)_{i}}{K_{i}}
$$

- \blacksquare \blacksquare With the DC04 selection expect 60k events/2 fb⁻¹
	- $-$ Relative relative-efficiency uncertainty 1-4%/ $\Delta \delta_{\rm D}$ bin with 2 fb⁻¹
	- Increased statistics reduces error
- \blacksquare Toy MC study smearing bin efficiencies in event generation by this amount leads to an additional 1° uncertainty without background and 3.2° uncertainty with DK_{comb} B/S=0.7

– Small effect compared to statistical uncertainty

 \blacksquare NB: the efficiency related to the PID of the bachelor π/K can be factored out and will be determined from the $\mathsf{D}^*{\rightarrow}\mathsf{D}(\mathsf{K}\pi)\pi$ data t $\rightarrow D(K_{\pi})_{\pi}$ data to better than one percent-ignore at present

1st February 2008

Asymmetry in efficiency in Dalitz space

- \mathbb{R}^2 ■ Considered charge asymmetries in the efficiency across the Dalitz plane
	- $-$ ε(m²₊, m² _−)≠ε(m²_−, m²₊)
- \mathbb{R}^2 Generated with the efficiency biased relative to one another depending on whether the event had m^2 ₊ $>m^2$ $_{-}$ or m^2 ₊ $<$ m^2 $_{-}$
- Maximum bias on ^γ induced was **<1°** for **10%** relative effect and full background \mathbb{R}^2 \blacksquare 10% effects would be evident in the D π sample

Resolution

- П $\Delta\delta_{\rm D}$ binning has some narrow regions in Dalitz space
- Investigation of how resolution on the Dalitz \mathcal{L} Dalitz variables might affected the extraction of γ
- 10 MeV²/c⁴ resolution (DC04) on Dalitz \blacksquare variables and generated toy
experiments with this smearing
- Found that this led to a few bins with $\overline{}$ and smallest (dark blue) \blacksquare largest (red) and smallest (dark blue) phase difference having a 2-3% relative changes in expected yields due to resolution induced migration
- Fit results on toy experiments \blacksquare where resolution included in generation but ignored in fit found no significant bias (<0.5**°**) on γ

Background fractions

- Combinatoric background rate will be determined from *B* and *D* mass sidebands which will cover at
least 2-3 times the area of the signal region least 2-3 times the area of the signal region
	- Use 10[×] in DC04 background studies but this will probably be unrealistic with data
- **If background distributions relatively flat in masses** one can estimate that this leads to B/S will be determined absolutely to around 0.01 or better
	- Toy studies suggest that there is no impact on ^γ precision with this kind of uncertainty
- Maybe complications depending on Dalitz space distribution of the PS background but can only speculate until we have the data in hand

Background composition

- For favoured mode background dominated by *^B*→*D*π
	- 14 × larger BF
	- – $-$ Power of the RICH
- For suppressed combinatoric dominates (green)
- For $B\rightarrow D(hh)K$ more even mixture of comb. and $D\pi$
	- \rightarrow $B\rightarrow$ $D(KK)K$ has significant nonresonant *^B*→*KKK* component

Determining the coherence factor

Ahalysis underway 10% effects in CP modes so great care with

- – $+$ Background subtraction
- – $-$ Efficiency calculation
- **Estimate of current sensitivity with** \blacksquare the addition of K^0 _L π^0 and further CP tags i.e. $\mathrm{K^0}_\mathrm{s}$ η to be added
- \blacksquare Further information in mixed CP SCS tags such as $\mathrm{K^0}_\mathrm{S}\pi^+\pi^-$

^σ*stat* **~ 0.1 with 800 pb-1**

Conclusion CLEOc

- **ECLEO-c measurements essential to fulfilling** this goal
- **But there is much more that can be done**
- **Full amplitude analysis of 4-body should yield** ultimate precision
	- –- Need DCS model, which can be accessed via CP tags at CLEO_C
	- –- Also will guide division of phase space for binned coherence factor analysis
- **Other modes that can be used:**
	- *^D*→*K[−]*π*+* π*⁰*(Coherence analysis underway)
	- $-D \rightarrow K^0{}_S K^+ K^-$ and $D \rightarrow K^0{}_S K^+ \pi^-$
	- *^D*→*K−K*⁺π+π[−] and *D*→*^K0S*π*[−]* ^π*+* π*⁰*