A precision test of lepton universality in K⁺→l⁺v decays at CERN NA62

Evgueni Goudzovski

(University of Birmingham)

<u>Outline:</u>

- 1) Physics motivation: leptonic kaon decays
- 2) Introduction to NA48/NA62 experiment at CERN
- 3) Data taking strategy and analysis method
- 4) Data analysis: backgrounds & systematic effects
- 5) Preliminary results
- 6) The future of the NA62 experiment
- 7) Conclusions

UCL High Energy Physics Seminar October 16, 2009

Introduction

Searches for physics beyond the Standard Model

Energy Frontier (LHC, Tevatron)

Search for direct evidence: production of heavy new particles. Large colliders and detectors.

Rarity Frontier

Search for deviations from <u>precise SM</u> predictions in <u>rare or forbidden processes</u>. Requires high precision and high beam intensity.

Sensitivity to new physics originates from <u>virtual contributions</u> involving new heavy particles at higher order loops. Mass range: up to 100 TeV.

Physics programme at the Rarity Frontier (pursued independently in kaon and B-meson sectors) is complementary to direct searches for new particles at the Energy Frontier

K_{I2} and π_{I2} decays in the SM

U

 $R_{\kappa}^{SM} = (2.477 \pm 0.001) \times 10^{-5}$

 $R_{\pi}^{SM} = (12.352 \pm 0.001) \times 10^{-5}$

Phys. Lett. 99 (2007) 231801

The basic observable sensitive to lepton flavour violation:

- Measurements of R_K and R_π have been long considered as tests of lepton universality.
- SM predictions: excellent sub-permille accuracy due to cancellation of hadronic uncertainties.
- <u>Recently realized</u>: helicity suppression of the electronic mode might enhance sensitivity of R_K to non-SM effects to an experimentally accessible level.

 v_{e}, v_{μ}

$R_{K} = K_{e2}/K_{\mu 2}$ beyond the SM

MSSM – tree level (two Higgs doublets) K_{12} can proceed via exchange of charged Higgs H⁺ instead of W⁺ → Does not affect the value of R_{K}

MSSM – other possible scenario

H+ mediated lepton flavour violating contribution with emission of ν_τ

 \rightarrow R_K enhancement can be experimentally accessible!

$$\mathbf{R}_{\mathbf{K}}^{\mathsf{LFV}} \approx \mathbf{R}_{\mathbf{K}}^{\mathsf{SM}} \left[1 + \left(\frac{\mathbf{m}_{\mathbf{K}}^{4}}{\mathbf{M}_{\mathbf{H}^{\pm}}^{4}} \right) \left(\frac{\mathbf{m}_{\tau}^{2}}{\mathbf{M}_{\mathbf{e}}^{2}} \right) | \mathbf{\Delta_{13}} |^{2} \mathrm{tan}^{6} \, \beta \right]$$

A few percent effect in large (not extreme) $tan\beta$ regime with massive charged Higgs

Example:

$$(\Delta_{13}=5\times10^{-4}, \tan\beta=40, M_{H}=500 \text{ GeV/c}^{2})$$

lead to $R_{K}^{LVF} = R_{K}^{SM}(1+0.013)$.

NB: analogous SUSY effects in pion decay are suppressed by a factor $(m_{\pi}/M_{K})^{4} \approx 6 \times 10^{-3}$

R_K & R_π: experimental status

Kaon decays:

→ PDG'08 average (1970s measurements): $R_{K} = (2.45 \pm 0.11) \times 10^{-5} (\delta R_{K}/R_{K} = 4.5\%)$

→ Recent improvement: KLOE (Frascati). Data collected in 2001-2005, 13.8K K_{e2} candidates, 16% background. $R_{K}=(2.493\pm0.031)\times10^{-5}$ ($\delta R_{K}/R_{K}=1.3\%$) (arXiv:0907:3594)

\rightarrow NA62 (phase I) goal:

~150K K_{e2} candidates, <10% background, accuracy $\delta R_K/R_K < 0.5\%$ comparable to expected non-SM contributions.

Pion decays:

- → PDG'08 average (1980s, 90s measurements):
 - $R_{\pi} = (12.30 \pm 0.04) \times 10^{-5} (\delta R_{\pi}/R_{\pi} = 0.3\%)$
- → Future plans: TRIUMF proposal S1072, $\delta R_{\pi}/R_{\pi}=0.06\%$ precision foreseen Toshio Numao, PANIC'08 conference

R_K world average (March 2009)

NA48/NA62: kaon physics at CERN

E. Goudzovski / UCL, 16 October 2009

NA48/NA62 K[±] beam line Kaon decays in flight: beamline + setup are ~ 700 feet long

K[±] beam line in 2007

Momentum spectrum and K sign

Improvement of K_{e2}/K_{u2}

kinematic separation

Optimization of M_{miss}² resolution:

narrow momentum band

beams ($\Delta P_{K}^{RMS}/P_{K}=2\%$)

Beam momentum:

<u>NA48/2 beam line</u>: capable of delivering simultaneous K⁺/K⁻ beams (74 GeV/c in 2007)

Kinematic ID of the K₁₂ candidates:

 $M^2_{miss} = (P_K - P_l)^2$

No beam spectrometer in 2007: P_{K} is not measured, beam average used

Kaon sign:

Beam halo background much higher for K_{e2}^{-} (~20%) than for K_{e2}^{+} (~1%):

~90% of data sample: K⁺ only. ~10% of data sample: K⁻ only.

K⁺ ONLY and K⁻ ONLY samples: direct measurements of halo background using samples of K_{12} candidates of the sign not present in the beam.

Data taking & detector: 2007/08

Data taking

- Four months in 2007: ~400K SPS spills, ~300TB of raw data
- Two weeks in 2008: special data sets allowing reduction of the systematic uncertainties.

Principal subdetectors for R_K:

- Magnetic spectrometer (4 DCHs): 4 views/DCH: redundancy ⇒ efficiency; Δp/p = 0.47% + 0.020%*p [GeV/c]
- Hodoscope
 fast trigger, precise t measurement (150ps).
- Liquid Krypton EM calorimeter (LKr) High granularity, quasi-homogenious; $\sigma_E/E = 3.2\%/E^{1/2} + 9\%/E + 0.42\%$ [GeV]; $\sigma_x = \sigma_y = 0.42/E^{1/2} + 0.6mm$ (1.5mm@10GeV).

Electromagnetic LKr calorimeter

Transversal segmentation: 13,248 cells (2×2cm²), no longitudinal segmentation. In the present analysis used for muon/electron identification and as a photon veto. 11

Trigger logic

Minimum bias trigger used (high efficiency, but low purity)

 $K_{\mu 2}$ condition: $Q_1 \times 1TRK/D$, downscaling (D) 50 to 150. Purity ~2% (rate dominated by the beam halo).

 K_{e2} condition: $Q_1 \times E_{LKr} \times 1TRK$. Purity ~10⁻⁵.

- Efficiencies of the trigger components are monitored using control triggers.
- E_{LKr} inefficiency for electrons measured to be (0.05±0.01)% for p_{track} >15 GeV/c.
- Different trigger conditions for signal and normalization modes.

Measurement strategy

(1) $K_{e2}/K_{\mu 2}$ candidates collected <u>simultaneously</u>:

- the result does not rely on kaon flux measurement;
- several systematic effects cancel at first order (e.g. reconstruction/trigger efficiencies, time-dependent effects).

(2) 10 independent counting experiments in track momentum bins:

 $\mathsf{R}_{\mathsf{K}} = \frac{\mathsf{N}(\mathsf{K}_{\text{e2}}) - \mathsf{N}_{\mathsf{B}}(\mathsf{K}_{\text{e2}})}{\mathsf{N}(\mathsf{K}_{\mu2}) - \mathsf{N}_{\mathsf{B}}(\mathsf{K}_{\mu2})} \cdot \frac{\mathsf{A}(\mathsf{K}_{\mu2}) \times f_{\mu} \times \epsilon(\mathsf{K}_{\mu2})}{\mathsf{A}(\mathsf{K}_{\text{e2}}) \times f_{\text{e}} \times \epsilon(\mathsf{K}_{\text{e2}})} \cdot \frac{1}{f_{\mathsf{LKr}}}$

 $\begin{array}{lll} N(K_{e2}), N(K_{\mu 2}): & \text{numbers of selected } K_{l2} \text{ candidates}; \\ N_B(K_{e2}), N_B(K_{\mu 2}): & \text{numbers of background events}; & & & \text{main source of systematic errors} \\ A(K_{e2}), A(K_{\mu 2}): & MC \text{ geometric acceptances (no ID)}; \\ f_{e}, f_{\mu}: & \text{directly measured particle ID efficiencies}; \\ \epsilon(K_{e2})/\epsilon(K_{\mu 2}) > 99.9\%: & E_{LKr} \text{ trigger condition efficiency}; \\ f_{LKr} = 0.9980(3): & \text{global LKr readout efficiency}. \end{array}$

(3) MC simulations used to a limited extent only:

- Geometrical part of the acceptance correction (not for particle ID);
- simulation of "catastrophic" bremsstrahlung by muons.

K_{e2} and K_{u2} selection

70

(GeV/c²)² 0.06 Large common part (topological similarity) Missing mass vs momentum, data electron hypothesis • one reconstructed track; 0.04 geometrical acceptance cuts; **Κμ2** veto extra LKr energy deposition clusters; 0.02 track momentum: 15GeV/c<p<65GeV/c; decay vertex defined as closest approach Ke2 of track & nominal kaon axis. ...poor separation at high p Kinematic separation -0.02 30 10 20 50 n $M_{miss}^2 = (P_K - P_l)^2$ missing mass Track momentum (GeV/c) 10^{7} Log scale Data P_{K} : <u>average</u> measured with K_{3π} decays **Electrons** → Excellent $K_{e2}/K_{\mu2}$ separation at $p_{track} < 25 GeV/c^{10^6}$ Muons 10⁵ Separation by particle ID 10⁴ E/p = (LKr energy deposit/track momentum).0.95<E/p<1.10 for electrons, 10^{3} E/p < 0.85 for muons. 10² \rightarrow Powerful μ^{\pm} suppression in e[±] sample: f~10⁶ 0.2 0.4 0.6 0.8 0 1.2 E/p: Energy/Track momentum E. Goudzovski / UCL, 16 October 2009

$K_{\mu 2}$ background in the K_{e2} sample

Background source:

"Catastrophic" energy loss by muons in LKr. Muons with E/p>0.95 are identified as electrons. $P(\mu \rightarrow e) \sim 3 \times 10^{-6}$ (and momentum-dependent).

 $P(\mu \rightarrow e)/R_{K} \sim 10\%$: K_{u2} decays represent a major background

Direct measurement of $P(\mu \rightarrow e)$ is required (based on pure muon samples) to validate <u>theoretical bremsstralung cross-section</u> in the very special high (E_{γ}/P_{μ}) region. [Phys. Atom. Nucl. 60 (1997) 576]

Obtaining pure muon samples:

Pb wall (~10X₀) between the HOD planes. Tracks traversing the wall and having E/p>0.95 are pure muon samples (electron contamination <10⁻⁷), with the $\mu \rightarrow e$ decay component (initially ~10⁻⁴) suppressed.

K_{µ2} background (2)

 $P(\mu \rightarrow e)$: measurement (2007 special muon run) vs Geant4-based simulation

- The 2008 special muon sample is twice as large as the 2007 one;
- Muons from regular $K_{\mu 2}$ decays from kaon runs with the Pb wall installed.

$K_{\mu 2}$ with $\mu \rightarrow e$ decay in flight

For NA62 conditions (74 GeV/c beam, ~100 m decay volume), $P(K_{\mu 2}, \mu \rightarrow e \text{ decay})/R_{K} \sim 10$

 $K_{\mu 2}$ ($\mu \rightarrow e$) naïvely seems a huge background

Muons from $K_{\mu 2}$ decay are fully polarized: Michel electron distribution

 $d^2\Gamma/dxd(\cos\Theta) \sim x^2[(3-2x) - \cos\Theta(1-2x)]$

 $x = E_e/E_{max} \approx 2E_e/M_{\mu}$

 Θ is the angle between p_e and the muon spin, (all quantities are defined in muon rest frame).

Result: $B/(S+B) = (0.23\pm0.01)\%$

Important but not dominant background

Only energetic forward electrons (passing M_{miss} , E/p, vertex CDA cuts) are selected as K_{e2} candidates: (high x, low cos Θ).

They are naturally suppressed by the muon polarisation

Radiative $K^+ \rightarrow e^+ v\gamma$ process

By definition, R_K is inclusive of the IB part only of the radiative K_{e2v} process

- The SD process treated as background.
- $K_{e2\gamma}$ (SD) is not helicity suppressed, and its rate is similar to that of K_{e2} .
- Known to a limited precision of ~15%.
 (NB: a very recent 4% precision measurement arXiv:0907:3594 is not used in the present analysis)

Experiment: BR=(1.52±0.23)×10⁻⁵ (average of 1970s measurements)

<u>Theory:</u> $BR = (1.38 - 1.53) \times 10^{-5}$ [PRD77 (2008) 014004] (uncertainty due to a model-dependent form factor)

$$\begin{array}{c} \mathsf{K}^{+} \rightarrow \mathsf{e}^{+} \mathsf{v} \mathsf{\gamma} \ (\mathsf{SD}) \ \mathsf{decay} \\ \\ \mathsf{Decay \ density:} & \frac{\mathrm{d}\Gamma(\mathrm{K} \rightarrow \mathrm{e}\nu\gamma)}{\mathrm{d}x\mathrm{d}y} = \underbrace{\rho_{\mathrm{IB}}(\mathrm{x},\mathrm{y})}_{\mathrm{helicity \ suppressed}} + \rho_{\mathrm{SD}}(\mathrm{x},\mathrm{y}) + \underbrace{\rho_{\mathrm{INT}}(\mathrm{x},\mathrm{y})}_{\mathrm{negligible}} \\ \\ \\ \mathsf{Kinematic \ variables}_{(\mathrm{kaon \ frame):}} & \mathrm{x} = 2\mathrm{E}_{\gamma}/\mathrm{M}_{\mathrm{K}}, \ \mathrm{y} = 2\mathrm{E}_{\mathrm{e}}/\mathrm{M}_{\mathrm{K}} \\ \\ \rho_{\mathrm{SD}}(\mathrm{x},\mathrm{y}) = \frac{\mathrm{G}_{\mathrm{F}}^{2}|\mathrm{V}_{\mathrm{us}}|^{2}\alpha}{64\pi^{2}}\mathrm{M}_{\mathrm{K}}^{5}\left((\mathrm{f}_{\mathrm{V}} + \mathrm{f}_{\mathrm{A}})^{2}\mathrm{f}_{\mathrm{SD}+}(\mathrm{x},\mathrm{y}) + (\mathrm{f}_{\mathrm{V}} - \mathrm{f}_{\mathrm{A}})^{2}\mathrm{f}_{\mathrm{SD}-}(\mathrm{x},\mathrm{y})\right) \end{array}$$

Two non-interfering contributions SD⁺ and SD⁻: emission of photons with positive and negative helicity

 $f_V(x)$, $f_A(x)$: model-dependent effective vector and axial couplings

E. Goudzovski / UCL, 16 October 2009

 $K^+ \rightarrow e^+ v\gamma$ (SD⁺) background

Only energetic electrons (E_e*>230MeV) are compatible to K_{e2} kinematic ID and contribute to background

Û

This region of phase space is accessible for direct BR and form-factor measurement (being above the $E_e^*=227$ MeV endpoint of the K_{e3} spectrum).

SD background contamination $B/(S+B) = (1.02\pm0.15)\%$

(uncertainty due to PDG BR, to be improved by NA62 & KLOE)

Beam halo background

Electrons produced by beam halo muons via $\mu \rightarrow e$ decay can be kinematically and geometrically compatible to genuine K_{e2} decays

Reminder

- Halo background much higher for K_{e2}^{-} (~20%) than for K_{e2}^{+} (~1%).
- Halo background in the $K_{\mu 2}$ sample is considerably lower.
- ~90% of the data sample is K^+ only, ~10% is K^- only.
- K⁺ halo component is measured directly with the K⁻ sample and vice versa.

Backgrounds: summary

K_{e2}: partial (40%) data set

E. Goudzovski / UCL, 16 October 2009

K_{u2}: partial (40%) data set

15.56M candidates with low background B/(S+B) = 0.25%

($K_{\mu 2}$ trigger was pre-scaled by D=150)

The only significant background source is the beam halo.

Electron ID efficiency (f_e)

Measured directly with samples of pure electrons:

- K[±]→π⁰e[±]ν from main K[±] data taking (limited track momentum p<50GeV/c);
- $K_L \rightarrow \pi^{\pm} e^{\pm} \nu$ from a special 15h K_L run (wider track momentum range, due to broad K_L momentum spectrum).

<u>Measurement with $K^{\pm} \rightarrow \pi^{0} e^{\pm} v$ decays:</u>

- Selected event sample consists of $K^{\pm} \rightarrow \pi^{0} e^{\pm} v$ and some $K^{\pm} \rightarrow \pi^{0} \mu^{\pm} v$ events;
- To subtract the muon component, normalised muon E/p spectrum measured using the $K_{\mu 2}$ sample is used.

Measurement with $K_L \rightarrow \pi^{\pm} e^{\pm} v$ is more difficult: the pion component also contributes to the spectrum.

> Excellent agreement between K^{\pm} and K_{L} methods. Average f_{e} =99.15%, precision <0.1%, weak momentum dependence.

LKr inefficiency map

LKr efficiency is monitored vs time for every 2×2cm² cell within acceptance. A typical example of the inefficiency map is presented below.

E. Goudzovski / UCL, 16 October 2009

Other systematic effects

Geometric acceptance correction

- p_{track} -dependent, $A(K_{\mu 2})/A(K_{e2}) \sim 1.3$;
- strongly affected by the radiative (IB) corrections to K_{e2};

IB process simulated according to V. Cirigliano and I. Rosell, Phys. Lett. 99 (2007) 231801

• conservative systematic uncertainty for prelim. result: $\delta R_K/R_K = 0.3\%$, due to approximations used in IB simulation.

Trigger efficiency correction

- E_{LKr} efficiency directly affects R_K;
- monitored with control trigger samples;
- conservative systematic uncertainty for preliminary result: $\delta R_K/R_K = 0.3\%$ (due to dead time generated by accidentals).

Global LKr efficiency

- Also affects the result directly;
- f_{LKr}=(99.80±0.03)% is measured directly using a parallel ('spy') calorimeter readout.

Comparison to world data

E. Goudzovski / UCL, 16 October 2009

R_K: sensitivity to new physics

Exclusion limits at 95% CL derived from the new R_K world average are presented.

For non-tiny values of the LFV effective mixing Δ_{13} , sensitivity to H[±] in $R_K = K_{e2}/K_{\mu 2}$ is better than in $B \rightarrow \tau v$

R_K measurements are currently in agreement with the SM expectation at ~1.5σ.
 Any significant enhancement with respect to the SM value would be an evidence of new physics

The future of NA62: $K_{\pi\nu\nu}$

 $K^+ \rightarrow \pi^+ vv$: theoretically clean, sensitive to NP, almost unexplored

Branching ratio ×10 ¹⁰		
	Theory (SM)	Experiment
$K^+ \rightarrow \pi^+ \nu \nu (\gamma)$	0.82±0.08	1.73 ^{+1.15} _1.05
$K_L \rightarrow \pi^0 \nu \nu$	0.28±0.04	<670 (90% CL)

 $\mathsf{BR}(\mathsf{K}^+ \to \pi^+ \nu \nu) \sim |\mathsf{V}_{\mathsf{ts}}^* \mathsf{V}_{\mathsf{td}}|^2$

- Ultra-rare FCNC process, proceeds via penguin and loop diagrams only.
- Hadronic matrix element is extracted from $K^+ \rightarrow \pi^0 e^+ \nu$.
- Exceptional SM precision not matched $K_L \rightarrow \pi^0 e^+ e^$ by any other loop-induced meson decay. $\overline{\eta} < 3.3$
- Uncertainties mainly come from $K_L \rightarrow \pi^0 \mu^+ \mu^-_{-1}$ charm contributions. $\overline{\eta} < 5.4$

 η CKM unitarity triangle with kaons オンカキレン 0 ρ $K_L \rightarrow \mu^+ \mu^ \overline{\eta}$ $K^+ \to \pi^+ \nu \overline{\nu}$ $K_L \rightarrow \pi^0 v \overline{v}$: 2 exp. theory $\overline{\eta}$ <17 $\overline{\eta} < 3.3$ 0 \mathcal{E}_K $\overline{\eta} < 5.4$ C. Smith, CKM'08

ρ

3

2

E. Goudzovski / UCL, 16 October 2009

Sensitivity of New Physics

- Large variations in predictions for New Physics.
- Need a 10% precision measurement to provide a stringent SM test.

The NA62 collaboration aims to measure O(100) K⁺ $\rightarrow \pi^+ \nu \nu$ candidates with ~10% background in 2-3 years of data taking

NA62 experiment (phase II)

- R&D is finishing, subdetector construction has started.
- Approved by the CERN research board in December 2008;
- Reviewed by PPAP in July 2009;
- Sol to be submitted to PPAN in November 2009.
 Signed by four institutes: Birmingham, Bristol, Glasgow, Liverpool.

NA62 event display

Conclusions & prospects

- Due to the helicity suppression of the K_{e2} decay, the measurement of R_{K} is well-suited for a stringent test of the Standard Model.
- NA62 data taking in 2007-08 was optimised for R_K measurement, and increased the world K_{e2} sample by an order of magnitude. Excellent K_{e2}/K_{µ2} separation (>99% electron ID efficiency and ~10⁶ muon suppression) leads to a low 8% background.
- Preliminary result based on ~40% of the NA62 K_{e2} sample $R_{K} = (2.500\pm0.016) \times 10^{-5}$ reached a record 0.7% accuracy, and is compatible with the SM prediction. Timely result: direct searches for New Physics at the LHC are approaching.
- Future of NA62: stringent SM test by measurement of the ultra rare decay $K^+ \rightarrow \pi^{\pm}\nu\nu$ with 10% precision, excellent prospects for R_K measurement at 0.1% level, extensive rare decay programme.