Fermilab

Diving Deep into the NOvA Experiment

Evan Niner, Fermilab University College London 1 September 2017

The NOvA Experiment

- Observe neutrinos from NuMI neutrino beam line at Fermilab
- Two functionally identical detectors
- 810 km baseline, the longest in the world
- Uses four oscillation channels:

$$\begin{array}{ll}
\nu_{\mu} \to \nu_{\mu} & \overline{\nu}_{\mu} \to \overline{\nu}_{\mu} \\
\nu_{\mu} \to \nu_{e} & \overline{\nu}_{\mu} \to \overline{\nu}_{e}
\end{array}$$

- Measure θ_{13} , θ_{23} , Δm^2_{32} , mass hierarchy, and δ_{cp}
- Sterile neutrino searches, exotic searches, neutrino cross sections

- 120 GeV protons extracted from the Main Injector at Fermilab in 10 µs spills
- Magnetic focusing horns allow selection of charge sign for selecting a neutrino or antineutrino beam
- 14.6 milli-radians off-axis, narrow beam around oscillation maximum
- Beam 97.5% v_{μ} with 0.7% v_{e} and 1.8% wrong-sign contamination

NOVA Detectors

15.5 m

Two functionally identical detectors

 Extruded plastic cells alternating vertical and horizontal orientation filled with liquid scintillator

14 kton

896 layers

 Charged particles passing through cells produce light which is collected.

NOvA Results 2016

- 6.05e20 POT neutrino data
- $\mathbf{v}_{\mu} \longrightarrow \mathbf{v}_{\mu}$
 - PRL 118, 151802
 - exclude maximum mixing at 2.5 σ
- $v_{\mu} \rightarrow v_{e}$
 - PRL 118, 231801
 - Inverted hierarchy, lower octant is excluded at > 93% C.L.
 - first implementation of a convolutional neural network in a HEP result
- Sterile neutrinos
 - arXiv:1706.04592
 - No evidence in NC disappearance search

The Challenge

🛟 Fermilab

Far Detector 550 µs Readout Window

Cell hits colored by charge deposition

Far Detector 10 µs NuMI Beam Window

Cell hits colored by charge deposition

Far Detector Neutrino Interaction

Cell hits colored by charge deposition

9 9/1/17 Evan Niner I Deep Learning in NOvA

Observing Neutrino Interactions

Event Reconstruction in NOvA

10 µs Near Detector Beam Window

After Space-Time Separation

After Vertex and Prong Formation

Event Classification before Deep Learning

- Likelihood Identifier (LID)
 - Compare longitudinal and transverse dE/dx in leading shower to templates for different particle hypotheses
 - Build neural net from these inputs and reconstructed quantities.
 - Identifies electron neutrinos
- ReMID
 - Build a KNN classifier from four reconstructed quantities related to muons (length, dE/dx, scattering)
 - Identifies muon neutrinos

- Neurons with activation and propagation functions, weights between inputs
- Loss function to calculate network performance
- Regularization of weights to avoid overtraining
- Back propagate errors in loss function to nodes, update weights with gradient decent

Enter Deep Learning

Can we improve the networks by making them deeper to extract increasing complex features?

http://www.martinhilbert.net/worldinfocapacityppt-html/

http://www.dual.sphysics.org/index.php/gpu/

Advancement in GPUs and data storage make this possible

‡ Fermilab

Computer Vision

- Deep neural networks for object recognition with pixel inputs to network
- First GPU trained network at 2012 ILSVRC (ImageNet Large-Scale Visual Recognition Challenge) reduced classification error rate from 26.2% to 15.4%
- Now achieving super human performance (<5%) with image net dataset

Convolutional Neural Networks

- Instead of training with a weight for each pixel, convolve kernel operations across the image to extract features
- Inspired by the visual cortex

CNN Components

 Convolutional layers train an array of kernels to output feature maps

Single depth slice

 Pooling layers downsample the feature maps by taking the average or maximum value from image patches

1	1 1 2				
5	6	7	8		
3	2	1	0		
1	2	3	4		

y

max pool with 2x2 filters and stride 2

6	8
3	4

Early CNNs

• 1989 "LeNet"

http://deeplearning.net/tutorial/lenet.html

http://yann.lecun.com/exdb/lenet/

Training Advancements

- Better activation functions to avoid saturation
- Dropout layers to prevent over training
- Stochastic gradient • decent

(b) After applying dropout.

Advanced CNNs

- 2014 GoogLeNet
- C. Szegedy et al., arXiv:1409.4842
- "Network-in-Network"
- Uses kernels of serval sizes
- Number of maps controlled by series of 1x1 convolutions

Deep Learning in NOvA

Low-level features

Raw data

https://developer.nvidia.com/deep-learning-courses

Mid-level features

High-level features

Input Images

- Produce a pair of pixel maps for the X and Y view of each interaction
- Input images are 80 cells by 100 planes
- Sparse images compared to computer vision field

Network Architecture

- Architecture adapted from GoogLeNet
 - Each event view processed separately and ther merged
 - Sparse images allow for shallower network
- Convolutional Visual Network (CVN)
- Pixel intensities varied with 1% gaussian noise
- Images randomly flipped along cell axis
- Output classifies neutrino interaction type $(v_{\mu}, v_{\tau}, v_e, NC, \text{ cosmic})$

Network-in-network inception modules with kernels of multiple dimensions

Training the Network

- Trained on 4.7 million minimally preselected events, distributed among all neutrino interaction categories (80% training, 20% testing)
- Second training stage added cosmic data events
- Calibrated energy depositions reduced to 8 bit precision to compress files at no loss of information
- Network implemented and trained in the Caffe Framework (Y. Jia et al., arXiv: 1408.5093)
- Use two k40s within Fermilab Wilson Cluster, ~1 week wall time

Training the Network

- Trained on 4.7 million minimally preselected events, distributed among all neutrino interaction categories (80% training, 20% testing)
- Second training stage added cosmic data events
- Calibrated energy depositions reduced to 8 bit precision to compress files at no loss of information
- Network implemented and trained in the Caffe Framework (Y. Jia et al., arXiv: 1408.5093)
- Use two k40s within Fermilab Wilson Cluster, ~1 week wall time

Classification Matrix

NOvA Simulation

‡ Fermilab

CVN Performance

- v_μ signal separation is excellent, but ~identical to the existing KNN based selector. Expected since muons are easily identified.
- v_e selection 73% efficient, 76% pure with the CVN classifier. Performance gain is equivalent to 30% more exposure for the traditional selection techniques.

Convolutional Neural Networks

• Showing a muon neutrino interaction and the feature maps extracted from the convolutional kernels after the first inception module.

Convolutional Neural Networks

- Showing a electron neutrino interaction and feature maps extracted from the convolutional kernels after the first inception module
- The strong features extracted are the shower as opposed to the muon track

t-SNE representation of CVN classification. Truth labels shown for the training sample.

t-SNE representation of CVN classification. Truth labels shown for the training sample.

Performance Cross-checks on Data

• Excellent data/simulation agreement in the Near Detector with high statistics

Performance Cross-checks on Data

MRE (Muon Removed - Electron):

- Select muons in Near Detector interactions with a traditional classifier.
- Remove the muon hits and replace them with a single simulated electron of matching momentum.
- Data/MC comparisons show less than 1% difference in efficiency.

PID	Sample	Preselection	PID	Efficiency	Efficiency diff %
CVN	Data	262884	188809	0.718222	-0.36%
	MC	277320	199895	0.720809	

Performance Cross-checks on Data

MRBrem (Muon Removed Bremsstrahlung showers):

- Neutrino events are rare in the Far Detector, multitudes of cosmic ray muon events.
- Select cosmic muon events with an electromagnetic shower from bremsstrahlung radiation.
- Remove the muon hits and apply CVN classification to the remaining electromagnetic shower.
- Data/MC comparisons show very good agreement

NOvA Preliminary

One Network, Many results

Network produces multi-dimensional classification output, normalized to 1. Reduces processing time running one network for many analyzes.

Electron Neutrino Selection

Neutral Current Selection

Other applications: Particle Identification

 Instead of classifying the entire event, identify individual particles

 Input pixel maps of the particle and the neutrino interaction

 Couples to reconstruction quality of input tracks, train above a minimum purity

Other applications: Particle Identification

Go one step further in the future, classifying individual image pixels by particle via semantic segmentation, then feed back into the reconstruction.

Fermilab

40 9/1/17 Evan Niner I Deep Learning in NOvA

Other applications: Energy Estimation

- Recurrent Neural Networks are sequential, using the current state of the system and output of last iteration
- Add Long-Short Term Memory cell as secondary path to keep longer memory
- Feed reconstructed information from tracks, particle IDs, and energy estimators into network

Other applications: Energy Estimation

- Recurrent Neural Networks are sequential, using the current state of the system and output of last iteration
- Add Long-Short Term
 Memory cell as secondary in path to keep longer
 memory
- Feed reconstructed information from tracks, particle IDs, and energy estimators into network

Other applications: Energy Estimation

- Convolutional Neural network trained for energy estimation instead of a classification task
- Feed vertex reconstruction information into final fully connect layer
- Working toward multitarget networks that do both regression and classification tasks

More to Explore

- Inter-experimental LHC Machine Learning group
 - <u>https://iml.web.cern.ch</u>
- Inter-experimental Machine Learning working group for the intensity and cosmic frontiers
 - <u>http://machinelearning.fnal.gov</u>
- MicroBoone: "Convolutional Neural Networks Applied to Neutrino Events in a Liquid Argon Time Projection Chamber" JINST 12 (2017) no.03, P03011
- Vertex Reconstruction in MINEvA
 - <u>ieeexplore.ieee.org/iel7/7958416/7965814/07966131.pdf</u>
- Adaptation of CVN in DUNE as well as semantic segmentation and other networks
- Many applications in colliders, astrophysics and more

Summary

- Advancements in GPUs and the field of computer vision make training deep neural networks with minimal reconstruction feasible
- Many detectors in particle physics have an image like quality that makes them natural candidates for convolutional neural networks
- In NOvA a multi-classification CNN was developed that produced a performance gain equivalent to 30% more exposure, proven robust in Data/ MC studies
- Expanding NOvA DL applications to look at particle identification, energy estimation, vertexing, clustering, and more
- Just the tip of the iceberg! Many more applications of deep networks in HEP
- Thanks!