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The NOvA Experiment
• Observe neutrinos from NuMI 

neutrino beam line at Fermilab
• Two functionally identical 

detectors
• 810 km baseline, the longest 

in the world
• Uses four oscillation channels:

• Measure θ13, θ23, Δm232, mass 
hierarchy, and δcp

• Sterile neutrino searches, 
exotic searches, neutrino 
cross sections
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NuMI Beam

• 120 GeV protons extracted from the Main 
Injector at Fermilab in 10 μs spills

• Magnetic focusing horns allow selection of 
charge sign for selecting a neutrino or anti-
neutrino beam

• 14.6 milli-radians off-axis, narrow beam 
around oscillation maximum

• Beam 97.5% νμ with 0.7% νe and 1.8% 
wrong-sign contamination
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NOvA Detectors

• Two functionally identical detectors

• Extruded plastic cells alternating vertical and horizontal 
orientation filled with liquid scintillator

• Charged particles passing through cells produce light 
which is collected.
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NOvA Results 2016
• 6.05e20 POT neutrino data

• νμ —> νμ 
• PRL 118, 151802
• exclude maximum mixing at 2.5 σ

• νμ —> νe 
• PRL 118, 231801
• Inverted hierarchy, lower octant is 

excluded at > 93% C.L.
• first implementation of a convolutional 

neural network in a HEP result

• Sterile neutrinos
• arXiv:1706.04592
• No evidence in NC disappearance 

search
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The Challenge
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Far Detector 550 μs Readout Window
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Far Detector 10 μs NuMI Beam Window
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Far Detector Neutrino Interaction
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Observing Neutrino Interactions

Identify neutrinos by outgoing particles
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Event Reconstruction in NOvA
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10 μs Near Detector Beam Window
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After Space-Time Separation
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After Vertex and Prong Formation
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Event Classification before 
Deep Learning
• Likelihood Identifier (LID)
- Compare longitudinal and 

transverse dE/dx in leading shower 
to templates for different particle 
hypotheses
- Build neural net from these inputs 

and reconstructed quantities.
- Identifies electron neutrinos

• ReMID
- Build a KNN classifier from four 

reconstructed quantities related to 
muons (length, dE/dx, scattering)
- Identifies muon neutrinos
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Neural Networks

• Neurons with activation and propagation functions, weights between inputs

• Loss function to calculate network performance

• Regularization of weights to avoid overtraining

• Back propagate errors in loss function to nodes, update weights with 
gradient decent
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Enter Deep Learning
Can we improve the networks by making them deeper to extract increasing 
complex features?

http://www.martinhilbert.net/worldinfocapacityppt-html/
http://www.dual.sphysics.org/index.php/gpu/

Advancement in GPUs and data storage make this possible
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Computer Vision

• Deep neural networks for object recognition with pixel inputs to network
• First GPU trained network at 2012 ILSVRC (ImageNet Large-Scale Visual 

Recognition Challenge) reduced classification error rate from 26.2% to 
15.4%

• Now achieving super human performance (<5%) with image net dataset
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Convolutional Neural Networks

• Instead of training with a weight for each pixel, convolve kernel operations 
across the image to extract features

• Inspired by the visual cortex
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CNN Components

• Convolutional layers 
train an array of 
kernels to output 
feature maps

• Pooling layers 
downsample the 
feature maps by taking 
the average or 
maximum value from 
image patches
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Early CNNs

• 1989 “LeNet”
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http://deeplearning.net/tutorial/lenet.html http://yann.lecun.com/exdb/lenet/
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Training Advancements
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• Better activation 
functions to avoid 
saturation

• Dropout layers to 
prevent over training

• Stochastic gradient 
decent
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Advanced CNNs

• 2014 GoogLeNet
• C. Szegedy et al., arXiv:1409.4842
• “Network-in-Network”
• Uses kernels of serval sizes
• Number of maps controlled by series 

of 1x1 convolutions
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Deep Learning in NOvA

https://developer.nvidia.com/deep-learning-courses
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Input Images

• Produce a pair of pixel maps for the X and Y view of each interaction
• Input images are 80 cells by 100 planes
• Sparse images compared to computer vision field
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Network Architecture 

• Architecture adapted from GoogLeNet
• Each event view processed separately and then 

merged
• Sparse images allow for shallower network

• Convolutional Visual Network (CVN)

• Pixel intensities varied with 1% gaussian 
noise

• Images randomly flipped along cell axis

• Output classifies neutrino interaction type 
(νμ,ντ,νe,NC, cosmic)

26

Network-in-network inception modules
with kernels of multiple dimensions
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Training the Network
• Trained on 4.7 million minimally 

preselected events, distributed among 
all neutrino interaction categories (80% 
training, 20% testing)

• Second training stage added cosmic 
data events

• Calibrated energy depositions reduced 
to 8 bit precision to compress files at no 
loss of information

• Network implemented and trained in the 
Caffe Framework (Y. Jia et al., arXiv:
1408.5093)

• Use two k40s within Fermilab Wilson 
Cluster, ~1 week wall time
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Training the Network
• Trained on 4.7 million minimally 

preselected events, distributed among 
all neutrino interaction categories (80% 
training, 20% testing)

• Second training stage added cosmic 
data events

• Calibrated energy depositions reduced 
to 8 bit precision to compress files at no 
loss of information

• Network implemented and trained in the 
Caffe Framework (Y. Jia et al., arXiv:
1408.5093)

• Use two k40s within Fermilab Wilson 
Cluster, ~1 week wall time
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Classification Matrix

29
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CVN Performance

• νμ signal separation is excellent, but ~identical to the existing KNN based 
selector.  Expected since muons are easily identified.

• νe selection 73% efficient, 76% pure with the CVN classifier.  Performance 
gain is equivalent to 30% more exposure for the traditional selection 
techniques.

• One classifier, many analysis applications
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Convolutional Neural Networks

• Showing a muon neutrino interaction and the feature maps extracted from 
the convolutional kernels after the first inception module.
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Convolutional Neural Networks

• Showing a electron neutrino interaction and feature maps extracted from the 
convolutional kernels after the first inception module

• The strong features extracted are the shower as opposed to the muon track
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t-SNE representation of CVN classification.  Truth labels shown for the training sample.
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t-SNE representation of CVN classification.  Truth labels shown for the training sample.
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Performance Cross-checks on Data

• Excellent data/simulation agreement in the Near Detector with high statistics 
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Performance Cross-checks on Data
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MRE (Muon Removed - Electron): 

• Select muons in Near Detector interactions with a 
traditional classifier. 

• Remove the muon hits and replace them with a 
single simulated electron of matching momentum. 

• Data/MC comparisons show less than 1% 
difference in efficiency.
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Performance Cross-checks on Data
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MRBrem (Muon Removed 
Bremsstrahlung showers): 

• Neutrino events are rare in the Far 
Detector, multitudes of cosmic ray 
muon events. 

• Select cosmic muon events with an 
electromagnetic shower from  
bremsstrahlung radiation. 

• Remove the muon hits and apply 
CVN classification to the remaining 
electromagnetic shower. 

• Data/MC comparisons show very 
good agreement
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One Network, Many results
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PRL 118, 231801 arXiv:1706.04592
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Other applications:  Particle Identification

• Instead of classifying the 
entire event, identify 
individual particles

• Input pixel maps of the 
particle and the neutrino 
interaction

• Couples to reconstruction 
quality of input tracks, 
train above a minimum 
purity
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Other applications:  Particle Identification

40

Go one step further in the future, classifying individual image pixels by particle via 
semantic segmentation, then feed back into the reconstruction.
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Other applications:  Energy Estimation

• Recurrent Neural 
Networks are sequential, 
using the current state of 
the system and output of 
last iteration

• Add Long-Short Term 
Memory cell as secondary 
path to keep longer 
memory

• Feed reconstructed 
information from tracks, 
particle IDs, and energy 
estimators into network

41
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Other applications:  Energy Estimation

• Recurrent Neural 
Networks are sequential, 
using the current state of 
the system and output of 
last iteration

• Add Long-Short Term 
Memory cell as secondary 
path to keep longer 
memory

• Feed reconstructed 
information from tracks, 
particle IDs, and energy 
estimators into network
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Other applications:  Energy Estimation

• Convolutional Neural 
network trained for energy 
estimation instead of a 
classification task

• Feed vertex 
reconstruction information 
into final fully connect 
layer

• Working toward multi-
target networks that do 
both regression and 
classification tasks
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More to Explore
• Inter-experimental LHC Machine Learning group 
• https://iml.web.cern.ch

• Inter-experimental Machine Learning working group for the intensity and 
cosmic frontiers   
• http://machinelearning.fnal.gov

• MicroBoone: “Convolutional Neural Networks Applied to Neutrino Events in a 
Liquid Argon Time Projection Chamber”  JINST 12 (2017) no.03, P03011

• Vertex Reconstruction in MINEvA
•   ieeexplore.ieee.org/iel7/7958416/7965814/07966131.pdf

• Adaptation of CVN in DUNE as well as semantic segmentation and other 
networks

• Many applications in colliders, astrophysics and more
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Summary
• Advancements in GPUs and the field of computer vision make training deep 

neural networks with minimal reconstruction feasible

• Many detectors in particle physics have an image like quality that makes 
them natural candidates for convolutional neural networks

• In NOvA a multi-classification CNN was developed that produced a 
performance gain equivalent to 30% more exposure, proven robust in Data/
MC studies

• Expanding NOvA DL applications to look at particle identification, energy 
estimation, vertexing, clustering, and more

• Just the tip of the iceberg!  Many more applications of deep networks in HEP

• Thanks!
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