

Observation of H \rightarrow bb decays and VH production with the ATLAS detector

Yanhui Ma

UCL Seminar 2019.09.20

universite

PARIS-SACLA

 \succ Higgs boson physics and the role of $H \rightarrow bb$

➢ Run 2 VH(bb) analysis with 80fb⁻¹ data

Combinations with the other results

Conclusion and outlook

The Higgs boson in the Standard Model (SM)

- The SM is the most thoroughly tested theory of particle physics that has had a great success to explain experimental results of particle physics.
- > In the SM, the Higgs mechanism provides masses to bosons and fermions

3

The LHC collider and the ATLAS detector

- The largest and highest-energy particle collider in the world.
- Housed in a circular tunnel with 27 km in circumference and 45-175 m in depth underground.

- World's largest particle detector with a diameter of 25 m and length of 44 m.
- General-purpose detector, 25m
 designed mainly to search for
 the Higgs boson and new physics.

Higgs boson phenomenology at the LHC

Higgs boson phenomenology at the LHC

- Observed decays ~ 31% by Run 1 data
- Dominant bb decay, BR ~ 58%

- Provides direct probe of coupling to fermions
- Drives the uncertainty on the total decay width, and thus on measurement of absolute couplings
- The more Higgs boson decays we see, the less "space" remains available for "undetected/invisible" decays

Higgs hunting status in Spring 2018

- Run 1 Achievements
 - ggF and VBF production mode observed
 - Observation of decays to vector bosons (γ,W,Z)
 - Observation of Yukawa couplings to τ leptons
- Run 2 Achievements
 - Many measurements much better than Run 1 accuracy ${\scriptstyle{\Xi}}$
 - Direct top Yukawa coupling observation
 - Evidence of the $H \rightarrow bb$ decay (36 fb⁻¹ data)
- ➢ Observation of H→bb decays and VH production still missing
- Yukawa coupling to second generation fermions not yet in reach

Why is $H \rightarrow bb$ so difficult in term of the largest BR

- Very large multi-b-jets production cross section at the LHC
- Without additional handles, signal overwhelmed by background by many orders of magnitude
- Production modes with additional signatures can help reduce the backgrounds
 - ggF: only possible in very boosted regime
 - VBF: still in fully hadronic final state, challenging for trigger and background modelling; additional γ helps
 - VH: leptonic signatures for trigger and multi-jet background suppression; Most sensitive channel
 - ttH: give access also to top quark coupling

Previous VH, H→bb results (with mH~125 GeV)

	Signal strength	Significance (expected)	Significance (Observed)	References
Tevatron Legacy	1.9 ^{+0.8} -0.7	1.5σ	2.8σ	arXiv:1207.6436
ATLAS Run 1	0.52+0.40	2.6	1.4	arXiv:1409.6212
CMS Run1	0.89 ^{+0.47} -0.44	2.5	2.1	arXiv:1310.3687
LHC Run 1 Combination	0.70 ^{+0.29} -0.27	3.7	2.6	arXiv:1606.02266
ATLAS Run 2 2015-2016	1.20 ^{+0.42} -0.36	3.0	3.5	arXiv:1708.03299
CMS Run 2 2015-2016	1.19 ^{+0.40} -0.38	2.8	3.3	arXiv:1709.07497

- The analysis described in this seminar is based on 80 fb⁻¹ of good quality Run-2 data collected from 2015 to 2017
 - Analysis already dominated by systematic uncertainties

Larger pile-up; Adding new data not enough; Better control of the main backgrounds; Precision on jets and b-tagging calibration

ATLAS Run 2 VH, $H \rightarrow$ bb analysis with 80 fb⁻¹ data

Looking for VH, H→bb

3 Sub-channels: 0-lepton, 1-lepton, 2-lepton, based on the number of charge leptons (electron or muon) from the W/Z decay

≻ H→bb decays

- Two high pT b-jets
- Possibly additional jets

Process	$\sigma \times \mathcal{B}$ [fb]	Acceptance [%]		
1100000		0-lepton	1-lepton	2-lepton
$qq \to ZH \to \ell\ell b\bar{b}$	29.9	< 0.1	0.1	6.0
$gg \to ZH \to \ell\ell b\bar{b}$	4.8	< 0.1	0.2	13.5
$qq \to WH \to \ell \nu b \bar{b}$	269.0	0.2	1.0	—
$qq \to ZH \to \nu\nu b\bar{b}$	89.1	1.9		—
$gg \to ZH \to \nu\nu b\bar{b}$	14.3	3.5	—	_

Additional gg induced diagrams for ZH

Event selection---0 lepton channel

Z boson selection

- E_T^{miss} trigger
- Veto leptons with $p_T > 7$ GeV
- $E_T^{miss} > 150 GeV$
- Higgs boson candidate selection
 - 2 b-tagged jets, $p_T > 45$ (20) GeV
 - 1 additional jet max (reducing ttbar)
- Multijet Background rejection
 - A set of angular cuts remove it completely
- > About 20% of expected signal events are WH(τv)

Event selection---1 lepton channel

W boson selection

- Single-electron or E_T^{miss} trigger
- Well identified, isolated electron (>27 GeV) or muon (>25 GeV)
- Veto additional leptons p_T>7 GeV
- p_T^W > 150GeV
- Higgs boson candidate selection
 - 2 b-tagged jets, p_T > 45 (20) GeV
 - 1 additional jet max (reducing ttbar)

Multijet Background rejection

- $E_T^{miss} > 30$ GeV in electron channel
- Data driven estimation
- W+HF control region
 - $m_{bb} < 75$ GeV and $m_{top} > 225$ GeV
 - Purity >75%

Event selection---2 lepton channel

- Z boson selection
 - Single-lepton triggers
 - 2 electrons or muons, $p_T > 27$ (7) GeV
 - Z mass $81 < m_{\parallel} < 101 \text{ GeV}$
 - 75 GeV < p_T^2 < 150 GeV or p_T^2 > 150GeV
- Higgs boson candidate selection
 - 2 b-tagged jets, p_T > 45 (20) GeV
 - 0 or >=1 additional jet
- Top eµ control region
 - Opposite-flavour events
 - Purity ~ 99%

- ➢ First ATLAS sensitivity studies ~20 years ago predicted marginal sensitivity to VH, H → bb, based on projections to 30 fb⁻¹ of 14 TeV data
- ➢ What enables H→bb at the LHC
 - Thanks to the excellent LHC and ATLAS performance, > 100 fb⁻¹ of data were collected at centre-of-mass-energy of 7 TeV, 8 TeV and 13 TeV.
 - Excellent object identification performance (especially for B-jet identification)
 - The "high pT" regime
 - Improved Dijet mass resolution
 - Multivariate analysis techniques

Analysis key elements---data

- Stunning performance of the LHC: lumi up to 2 *10³⁴ cm⁻² s⁻¹
- Excellent operation of the ATLAS detector, high data quality
- High rates and large pile-up: Challenges for triggers, jets reconstruction, b-tagging...

Analysis key elements---b-tagging

 \succ Excellent object identification performance is the key ingredients for $H \rightarrow bb$, especially for the b-tagging identification.

Analysis key elements---b-tagging

Run 2 performance

- New IBL detector installed in LS1 (2013-2014)
- Tracking optimized for high-PU and high-pT environments
- Better ML algorithms
- At 70% b-jets efficiency, the rejection factor of light and c-jets are 300 and 8, respectively.
- Well modelled in simulation
- Good performance even at high pile-up

Analysis key elements--- The "high pT" regime

- Requiring high pT(V) (or pT(H)) suppresses background significantly more than signal, improving S/B ratio
- Exploited in event categorization:
 - 75 < $pT(V) \le 150 \text{ GeV} (2\text{-lepton})$
 - pT(V) > 150 GeV (all channels)
- Need large bkg MC statistics in tails of distributions!
- \succ H \rightarrow bb is a simple 2-body decay
 - At high pT, can cut hard on △ R_{bb} with very high signal efficiency
 - Backgrounds (esp. ttbar) significantly suppressed

Analysis key elements ---- Dijet mass resolution

 $\vec{p}_{T,b\bar{b}} = \sum \vec{p}_{T,\ell}$

- Sharpening signal mass peak directly improves sensitivity
- if available, add muon to jet momentum
- Simple average jet pT correction
 - Accounts for neutrinos, and interplay of resolution and pT spectrum effects.
- Mass resolution improvement ~18%

b-jet

(~10%)

b-jet (~10%)

lepton

 $(\sim 1\%)$

lepton (~1%)

- Kinematic fit in 2-lepton channel
 - Final state fully reconstructed
 - High resolution on leptons
 - Constrain jet kinematics better
- Mass resolution improvement ~40%

Analysis key elements--- Multi Variate Analysis techniques

MVA set up

- Simple and robust BDT with crossvalidation
- Input variables and hyper parameters tuned to yield best sensitivity
- Inputs variables
 - Kinematic variables, some specific to 3-jet regions.
 - m_{bb} , $\triangle R_{bb}$, p_T^V most important ones.

Variable	0-lepton	1-lepton	2-lepton
p_{T}^{V}	$\equiv E_{\rm T}^{\rm miss}$	×	×
$E_{\mathrm{T}}^{\mathrm{miss}}$	×	×	
$p_{\mathrm{T}}^{b_1}$	×	×	×
$p_{\mathrm{T}}^{b_2}$	×	×	×
m_{bb}	×	×	×
$\Delta R(ec{b_1},ec{b_2})$	×	×	×
$ \Delta\eta(ec{b_1},ec{b_2}) $	×		
$\Delta \phi (ec V, b ec b)$	×	×	×
$ \Delta\eta(ec V, ec b ec b) $			×
$m_{ m eff}$	×		
$\min[\Delta \phi(ec{\ell},ec{b})]$		×	
$m^W_{ m T}$		×	
$m_{\ell\ell_{-}}$			×
$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{S_{\mathrm{T}}}$			×
$m_{ m top}$, ,		×	
$ \Delta Y(V,bb) $		×	
_	Only in 3-jet events		
$p_{\mathrm{T}}^{\mathrm{jet}_3}$	×	×	×
m_{bbj}	×	×	×

Analysis key elements---- Multi Variate Analysis techniques

- Combine all observables into a single final discriminant
- One BDT per channel and analysis region

50 100 150 200 250 300 350 400 450 500

0

bb

m_{bb} [GeV]

Data

Diboson

VH \rightarrow Vbb (µ=1

W+(bb,bc,cc,bl

Z+(bb,bc,cc,bl

Pre-fit background

 \rightarrow Vbb $\times 2$

 $\Delta R(b_{1},b_{2})$

Uncertainty

Single top

Multijet

W+ċl

SM VH

Putting all together--- Main analysis strategy

Perform a binned maximum likelihood fit simultaneously in different categories to extract signal significance / signal strength (μ).

- Shape and relative normalizations across regions parametrized by NP, constrained within allowed systematics uncertainties
- A nominal analysis (main observable: BDT_{VH} output), two validation analyses (main observable: BDT_{VZ} output and m_{bb}).

Background modelling---general picture

- Use state-of-the-art MC generators (except MJ which is modelled in 1-lepton using a data-driven method).
- Constrain (shape and normalization) from data by using high purity control regions
- Main background normalizations floating in the fit.

Process	Normalisation factor
$t\overline{t}$ 0- and 1-lepton	0.98 ± 0.08
$t\bar{t}$ 2-lepton 2-jet	1.06 ± 0.09
$t\bar{t}$ 2-lepton 3-jet	0.95 ± 0.06
W + HF 2-jet	1.19 ± 0.12
W + HF 3-jet	1.05 ± 0.12
Z + HF 2-jet	1.37 ± 0.11
Z + HF 3-jet	1.09 ± 0.09

- Parametrize extrapolation uncertainties across regions as uncertainties on ratios of yields.
- Shape uncertainties on BDTs.

Background modelling---W/Z +HF

- 2 lepton low pTV region can constrain Z normalizations and shapes
- ➤ 1 lepton W+HF CR constrains W norm.
- Normalization factors 1.2 for both Z+hf and W+hf
- Extrapolations to 0-lepton or 1-lepton SR
- Uncertainties on flavour composition

Z + jets			
Z + ll normalisation	18%		
Z + cl normalisation	23%		
Z + HF normalisation	Floating (2-jet, 3-jet)		
Z + bc-to- $Z + bb$ ratio	30-40%		
Z + cc-to- $Z + bb$ ratio	13-15%		
Z + bl-to- $Z + bb$ ratio	20-25%		
0-to-2 lepton ratio	7%		
$m_{bb},p_{ m T}^V$	S		
	W + jets		
W + ll normalisation	32%		
W + cl normalisation	37%		
W + HF normalisation	Floating (2-jet, 3-jet)		
W + bl-to- $W + bb$ ratio	26% (0-lepton) and $23%$ (1-lepton)		
W + bc-to- $W + bb$ ratio	15% (0-lepton) and $30%$ (1-lepton)		
W + cc-to- $W + bb$ ratio	10% (0-lepton) and $30%$ (1-lepton)		
0-to-1 lepton ratio	5%		
W + HF CR to SR ratio	10% (1-lepton)		
$m_{bb}, p_{\mathrm{T}}^{V}$	S		

Background modelling---ttbar

- Due to the very different regions of phase space probed, the ttbar background model in the 2-lepton channel is decorrelated from the 0- and 1-lepton channels
- 0 and 1 lepton: some jets and/or leptons not recontructed, dominant background in 3-jet regions
- 2 lepton: all leptons and jets in the acceptance; very high purity eµ CR
- Normalization factors: 1:0
- Extrapolation to 0/1 lepton 2-jet regions
- Extrapolation to W+ HF CRs

$t\bar{t}$ (all are uncorrelated between the 0+1- and 2-lepton channels)			
$t\bar{t}$ normalisation	Floating (0+1-lepton, 2-lepton 2-jet, 2-lepton 3-jet)		
0-to-1 lepton ratio	8%		
2-to-3-jet ratio	9% (0+1-lepton only)		
W + HF CR to SR ratio	25%		
$m_{bb},p_{ m T}^V$	S		

Signal modelling

Standard prescriptions for systematic uncertainties: from theory calculations and from comparisons of Monte Carlo modelling variations, or variations of parameters

Signal				
Cross-section (scale)	0.7%~(qq),27%~(gg)			
Cross-section (PDF)	$1.9\% (qq \to WH), 1.6\% (qq \to ZH), 5\% (gg)$			
$H \to b\bar{b}$ branching fraction	1.7%			
Acceptance from scale variations	2.5-8.8%			
Acceptance from PS/UE variations for 2 or more jets	2.9-6.2% (depending on lepton channel)			
Acceptance from PS/UE variations for 3 jets	1.8-11%			
Acceptance from $PDF + \alpha_S$ variations	0.5-1.3%			
$m_{bb}, p_{\rm T}^V$, from scale variations	S			
$m_{bb}, p_{\rm T}^V, \text{ from PS/UE variations}$	S			
$m_{bb}, p_{\rm T}^V, \text{ from PDF} + \alpha_{\rm S} \text{ variations}$	S			
$p_{\rm T}^V$ from NLO EW correction	\mathbf{S}			

Results

Pre-unblinding validation: Diboson MVA analysis

- Same analysis strategy as the VH MVA analysis
 - Re-train the BDTs to look for VZ instead of VH
 - Robust validation of background model and associated uncertainties
- Signal strength compatible with the SM prediction
- The whole analysis procedure validated

VH MVA analysis results

- > Significance of VH(bb) signal at 4.9 σ (4.3 σ exp.)
 - Signal strength compatible with the SM prediction

Signal strength	Signal strength	p_0		Significance	
		Exp.	Obs.	Exp.	Obs.
0-lepton	$1.04_{-0.32}^{+0.34}$	$9.5 \cdot 10^{-4}$	$5.1 \cdot 10^{-4}$	3.1	3.3
1-lepton	$1.09\substack{+0.46\\-0.42}$	$8.7 \cdot 10^{-3}$	$4.9 \cdot 10^{-3}$	2.4	2.6
2-lepton	$1.38\substack{+0.46 \\ -0.42}$	$4.0 \cdot 10^{-3}$	$3.3\cdot10^{-4}$	2.6	3.4
$VH, H \rightarrow b\bar{b}$ combination	$1.16^{+0.27}_{-0.25}$	$7.3 \cdot 10^{-6}$	$5.3 \cdot 10^{-7}$	4.3	4.9

- Individual production modes significances
 - 2.5 σ (2.3 σ exp.) for WH
 - 4.0 σ (3.5 σ exp.) for ZH

VH MVA analysis results

Source of un	certainty	σ_{μ}	
Total		$\frac{-\mu}{0.250}$	
Statistical		0.259 0.161	
Statistical		0.101	
Systematic		0.203	
Experimenta	l uncertainties		
Jets		0.035	
$E_{\mathrm{T}}^{\mathrm{miss}}$		0.014	
Leptons		0.009	
	b-jets	0.061	
b-tagging	<i>c</i> -jets	0.042	
00 0	light-flavour jets	0.009	
	extrapolation	0.008	
Pile-up		0.007	
Luminosity		0.023	
Theoretical and modelling uncertainties			
Signal		0.094	
Floating nor	malisations	0.035	
Z + jets		0.055	
W + jets		0.060	
$t\bar{t}$		0.050	
Single top quark		0.028	
Diboson		0.054	
Multi-jet		0.005	
MC statistic	al	0.070	

Measurement dominated by systematics (signal and background modelling, MC statistics, b-tagging).

Post-fit plots VH MVA

- Data

tī

Z+jets

- Data

tī

Diboson

Single top

W+jets

Uncertainty

····· Pre-fit background

- VH, $H \rightarrow b\overline{b} \times 50$

Z+jets

VH, H \rightarrow bb (μ =1.16)

Diboson

Single top

W+jets

Uncertainty

····· Pre-fit background

- VH, $H \rightarrow b\overline{b} \times 10$

BDT_{VH} output

BDT_{VH} output

VH, $H \rightarrow b\overline{b}$ (µ=1.16)

Cross check: Di-jet mass analysis (DMA)

- Important cross-check to test robustness of result
 - Additional p_T^V Split at 200 GeV
 - Additional cuts on $\triangle R_{bb}$ (p_T^V dependent), m_T^W (1 lepton), E_t^{miss} (2 lepton)
 - Fit m_{bb} instead of BDT output

- Significance of VH(bb) signal at 3.6 σ (3.5 σ exp.)
- Consistent with MVA result in all channels

Post-fit plots VH di-jet mass analysis

Combinations with the other results

Combination of $H \rightarrow bb$ searches

- Combine Run 1 and Run 2 analyses in VH, VBF and ttH production modes
 - Results assume SM Higgs boson production cross-section
 - Only H→bb branching ratio is correlated across the six analyses
- > Observation of H \rightarrow bb decays at 5.4 σ (5.5 σ exp.)
- Main contributions from VH channels (contributions of VBF and ttH channels 1.5σ and 1.9 σ)
- Compatibility of the 6 measurements 54%

Combination of VH searches

- Combine Run 2 analyses in bb, γγ and 4l decays
 - Updated analyses with 2015-2017 Run 2 data in all channels
 - Results assume SM Higgs boson branching fractions
- > Observation of VH production at 5.3 σ (4.8 σ exp.)
- Main contributions from bb channels (contributions of 4l and γγ channels 1.1σ and 1.9 σ)
- Compatibility of the 3 measurements 96%

Conclusions

- > VH(bb) analysis carried out on full 2015-17 dataset
- With Run 2 79.8 fb⁻¹ dataset, found strong evidence for VH(bb) with a significance of 4.9 σ (4.3 σ exp.) and a mu value of 1.16 +/-0.26
- With full Hbb combination, 5.4 (5.5) σ observed (exp.) for H→bb with mu value of 1.01 +/- 0.20
- With Run 2 VH combination, 5.3 (4.8) σ
 observed (exp.) for VH with mu value of 1.13
 +/- 0.24

These results provide an observation of the H \rightarrow bb decay mode, and also of the Higgs boson being produced in association with a vector boson.

Outlook

- Couplings of the Higgs boson beyond those predicted by the SM are far from ruled out.
- > More data, more precision measurements!
 - ~60 fb⁻¹ data from 2018 data taking, another 150 fb⁻¹ data expected in Run 3 data taking.
 - The Higgs p_T spectrum is highly sensitive to new physics with the sensitivity increasing with higher Higgs p_T.
 - Boosted analysis techniques, simplified template cross section measurement.
- Work more closely with CP group to reduce the experimental uncertainties.
- New techniques for modelling uncertainties, more dedicated control regions/ data-driven methods.
- More dedicated filters at generator level.

Source of un	certainty	σ_{μ}
Total		0.259
Statistical Systematic		$\begin{array}{c} 0.161 \\ 0.203 \end{array}$
Experimenta	l uncertainties	
Jets $E_{\rm T}^{\rm miss}$ Leptons <i>b</i> -tagging	<i>b</i> -jets <i>c</i> -jets light-flavour jets extrapolation	$\begin{array}{c} 0.035\\ 0.014\\ 0.009\\ 0.061\\ 0.042\\ 0.009\\ 0.008\\ \end{array}$
Pile-up Luminosity	•	$0.007 \\ 0.023$

Theoretical and modelling uncertainties

Signal	0.094
Floating normalisations	0.035
Z + jets	0.055
W + jets	0.060
$t\overline{t}$	0.050
Single top quark	0.028
Diboson	0.054
Multi-jet	0.005

MC statistical	0.070

Back up

The LHC collider

- > The largest and highest-energy particle collider in the world.
- Housed in a circular tunnel with 27 km in circumference and 45-175 m in depth underground.

- Four main experiments: ATLAS, CMS, LHCb, ALICE.
- Designed proton-proton collision energy: 14 TeV (13 TeV at Run 2).

The ATLAS detector

- ➢ World's largest particle detector with a diameter of 25 m and length of 44 m.
- General-purpose detector, designed mainly to search for the Higgs boson and new physics.
- Sub-detectors:
 - Inner detector:
 - Measure the trajectories and momenta of charged particles
 - EM and Hadronic calorimeter
 - Measure the energy of electrons, photons and hadrons
 - Muon spectrometer
 - Measure the trajectories and momenta of muon

A new pixel-detector layer, IBL, inserted during LS1, improved the performance of tracking, vertexing, b-tagging, etc.

The ATLAS detector---ID and IBL

 Improvement of 10% for the b-tagging algorithm performance in Run 2

- Efficiency ~ 80% w.r.t. offline selection at MET > 150 GeV, > 95% at 200 GeV
- Efficiency measurement in Z, W and ttbar events

- \succ The MET trigger can also be used to select events with W \rightarrow mu nu cays
 - Muons are not part of the computation of MET at trigger level
 - More efficiency than single muon trigger at pTW > 150 GeV

Process	ME generator	ME PDF	PS and Hadronisation	UE model tune	Cross-section order			
Signal, mass set to	Signal, mass set to 125 GeV and $b\bar{b}$ branching fraction to 58%							
$\begin{array}{c} qq \to WH \\ \to \ell \nu b\bar{b} \end{array}$	Роwнед-Box v2 [76] + GoSam [79] + MiNLO [80,81]	NNPDF3.0NLO ^(\star) [77]	Рутніа 8.212 [68]	AZNLO [78]	$\frac{\text{NNLO(QCD)}+}{\text{NLO(EW)} [82-88]}$			
$qq ightarrow ZH ightarrow u u u ar{b}/\ell \ell b ar{b}$	Powheg-Box v2 + GoSam + MiNLO	$NNPDF3.0NLO^{(\star)}$	Рутніа 8.212	AZNLO	$\frac{\text{NNLO(QCD)}^{(\dagger)}}{\text{NLO(EW)}} +$			
$gg ightarrow ZH \ ightarrow u u b ar{b}/\ell\ell b ar{b}$	Powheg-Box v2	NNPDF3.0NLO ^(*)	Рутніа 8.212	AZNLO	NLO+ NLL [89–93]			
Top quark, mass s	et to 172.5 GeV							
$egin{array}{c} tar{t}\ s ext{-channel}\ t ext{-channel}\ Wt \end{array}$	Powheg-Box v2 [94] Powheg-Box v2 [97] Powheg-Box v2 [97] Powheg-Box v2 [100]	NNPDF3.0NLO NNPDF3.0NLO NNPDF3.0NLO NNPDF3.0NLO	Рутніа 8.230 Рутніа 8.230 Рутніа 8.230 Рутніа 8.230	A14 [95] A14 A14 A14 A14	NNLO+NNLL [96] NLO [98] NLO [99] Approximate NNLO [101]			
Vector boson $+$ jet	ts							
$ \begin{array}{l} W \to \ell \nu \\ Z/\gamma^* \to \ell \ell \\ Z \to \nu \nu \end{array} $	Sherpa 2.2.1 [71, 102, 103] Sherpa 2.2.1 Sherpa 2.2.1	NNPDF3.0NNLO NNPDF3.0NNLO NNPDF3.0NNLO	Sherpa 2.2.1 [104, 105] Sherpa 2.2.1 Sherpa 2.2.1	Default Default Default	NNLO [106] NNLO NNLO			
Diboson								
$\begin{array}{c} qq \rightarrow WW \\ qq \rightarrow WZ \\ qq \rightarrow ZZ \\ gg \rightarrow VV \end{array}$	Sherpa 2.2.1 Sherpa 2.2.1 Sherpa 2.2.1 Sherpa 2.2.2	NNPDF3.0NNLO NNPDF3.0NNLO NNPDF3.0NNLO NNPDF3.0NNLO	Sherpa 2.2.1 Sherpa 2.2.1 Sherpa 2.2.1 Sherpa 2.2.2	Default Default Default Default	NLO NLO NLO NLO			

Signal and Backgrounds Samples

Signal

 Both qqVH and ggZH using latest Powheg+MiNLO + Pythia8 samples

Background

- V (W/Z)+jets : Sherpa 2.2.1 with jet flavor filter
- Dibson : Sherpa 2.2.1 for quark induced samples (qqVV). After EPS, include also gluon induced (ggVV) samples with Sherpa 2.2.2
- ttbar : Powheg+Pythia8, 2-lepton also incorporates dilepton filtered sample. Dedicated MET filter ttbar samples also used in 0 lepton
- Single-top : updated to Powheg+Pythia8 samples since EPS

Multijet

Negligible in 0 and 2 lepton (confirmed by lots of detailed studies), data-driven in 1 lepton channel (fraction: ~2-3%)

Event selections

Q-l+:	0-lepton	1-le	pton	2-lepton
Selection	-	e sub-channel	μ sub-channel	-
Trigger	$E_{\mathrm{T}}^{\mathrm{miss}}$	Single lepton	$E_{\mathrm{T}}^{\mathrm{miss}}$	Single lepton
Leptons	0 loose leptons with $p_{\rm T} > 7 {\rm ~GeV}$	$\begin{array}{l} 1 \hspace{0.1 cm} tight \hspace{0.1 cm} electron \\ p_{\mathrm{T}} > 27 \hspace{0.1 cm} \mathrm{GeV} \end{array}$	$1 \ tight \ muon \ p_T > 25 \ GeV$	2 loose leptons with $p_{\rm T} > 7 \text{ GeV}$ $\geq 1 \text{ lepton with } p_{\rm T} > 27 \text{ GeV}$
$E_{\mathrm{T}}^{\mathrm{miss}}$	$> 150 { m ~GeV}$	$> 30 { m GeV}$	—	_
$m_{\ell\ell}$	_		_	$81~{\rm GeV} < m_{\ell\ell} < 101~{\rm GeV}$
Jets	Exactly $2 / E_2$	xactly 3 jets		Exactly 2 / \geq 3 jets
Jet $p_{\rm T}$		$> 20 { m GeV}$ $> 30 { m GeV}$ for	for $ \eta < 2.5$ $2.5 < \eta < 4.5$	
<i>b</i> -jets		Exactly 2	b-tagged jets	
Leading <i>b</i> -tagged jet $p_{\rm T}$		> 4	5 GeV	
H_{T}	$>120~{\rm GeV}$ (2 jets), $>150~{\rm GeV}$ (3 jets)		_	_
$\min[\Delta \phi(\vec{E}_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{jets})]$	$> 20^{\circ} (2 \text{ jets}), > 30^{\circ} (3 \text{ jets})$		_	_
$\Delta \phi(ec{E}_{ m T}^{ m miss}, ec{bb})$	$> 120^{\circ}$		_	_
$\Delta \phi(ec{b_1},ec{b_2})$	$< 140^{\circ}$		_	_
$\Delta \phi(ec{E}_{\mathrm{T}}^{\mathrm{miss}},ec{p}_{\mathrm{T}}^{\mathrm{miss}})$	$< 90^{\circ}$		_	_
p_{T}^{V} regions	> 150	${ m GeV}$		75 GeV $< p_{\rm T}^V < 150$ GeV, > 150 GeV
Signal regions	_	$m_{bb} \ge 75 \text{ GeV}$ of	${\rm t}\ m_{\rm top} \leq 225\ {\rm GeV}$	Same-flavour leptons Opposite-sign charges ($\mu\mu$ sub-channel)
Control regions	_	$m_{bb} < 75 \text{ GeV}$ and	d $m_{\rm top}>225~{\rm GeV}$	Different-flavour leptons Opposite-sign charges

Channel								
Selection	0-lepton	1-lepton	2-lepton					
$m^W_{ m T}$	-	$< 120 { m ~GeV}$	-					
$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{S_{\mathrm{T}}}$	-	-	$< 3.5 \sqrt{\mathrm{GeV}}$					
	p_{T}^{V} re	egions						
p_{T}^{V}	$75-150~{ m GeV}$	$150-200~{\rm GeV}$	$> 200 { m ~GeV}$					
	(2-lepton only)							
$\Delta R(\vec{b}_1,\vec{b}_2)$	<3.0	<1.8	<1.2					

		Categories				
Channel	SB/CB	$75 \mathrm{GeV}$	$V < p_{\rm T}^V < 150 { m ~GeV}$	$p_{\rm T}^V > 150 { m ~GeV}$		
Channer		2 jets	3 jets	2 jets	3 jets	
0-lepton	SR	-	-	BDT	BDT	
1-lepton	SR	-	-	BDT	BDT	
2-lepton	SR	BDT	BDT	BDT	BDT	
1-lepton	W + HF CR	-	-	Yield	Yield	
2-lepton	$e\mu~{ m CR}$	m_{bb}	m_{bb}	Yield	m_{bb}	

Background Modelling

Z + jets						
Z + ll normalisation	18%					
Z + cl normalisation	23%					
Z + HF normalisation	Floating (2-jet, 3-jet)					
Z + bc-to- $Z + bb$ ratio	30-40%					
Z + cc-to- $Z + bb$ ratio	13-15%					
Z + bl-to- $Z + bb$ ratio	20-25%					
0-to-2 lepton ratio	7%					
$m_{bb}, p_{\mathrm{T}}^{V}$	S					
	W + jets					
W + ll normalisation	32%					
W + cl normalisation	37%					
W + HF normalisation	Floating $(2\text{-jet}, 3\text{-jet})$					
W + bl-to- $W + bb$ ratio	26% (0-lepton) and $23%$ (1-lepton)					
W + bc-to- $W + bb$ ratio	15% (0-lepton) and $30%$ (1-lepton)					
W + cc-to- $W + bb$ ratio	10% (0-lepton) and $30%$ (1-lepton)					
0-to-1 lepton ratio	5%					
W + HF CR to SR ratio	10% (1-lepton)					
$m_{bb},p_{ m T}^V$	S					
$t\bar{t}$ (all are uncorrelation	ted between the $0+1$ - and 2-lepton channels)					
$t\bar{t}$ normalisation	Floating (0+1-lepton, 2-lepton 2-jet, 2-lepton 3-jet)					
0-to-1 lepton ratio	8%					
2-to-3-jet ratio	9% (0+1-lepton only)					
W + HF CR to SR ratio	25%					
$m_{bb},p_{ m T}^V$	S					
	Single top-quark					
Cross-section	4.6% (s-channel), $4.4%$ (t-channel), $6.2%$ (Wt)					
Acceptance 2-jet	17% (t-channel), $55%$ (Wt(bb)), $24%$ (Wt(other))					
Acceptance 3-jet	20% (t-channel), $51%$ ($Wt(bb)$), $21%$ ($Wt(other)$)					
$m_{bb},p_{ m T}^V$	S (t-channel, $Wt(bb)$, $Wt(other)$)					
	Multi-jet (1-lepton)					
Normalisation	60 – 100% (2-jet), 90 – 140% (3-jet)					
BDT template	S					
±						

ZZ	
Normalisation	20%
0-to-2 lepton ratio	6%
Acceptance from scale variations	10-18%
Acceptance from PS/UE variations for 2 or more jets	6%
Acceptance from PS/UE variations for 3 jets	7% (0-lepton), $3%$ (2-lepton)
$m_{bb}, p_{\rm T}^V$, from scale variations	S (correlated with WZ uncertainties)
$m_{bb}, p_{\rm T}^V$, from PS/UE variations	S (correlated with WZ uncertainties)
m_{bb} , from matrix-element variations	S (correlated with WZ uncertainties)
WZ	
Normalisation	26%
0-to-1 lepton ratio	11%
Acceptance from scale variations	13-21%
Acceptance from PS/UE variations for 2 or more jets	4%
Acceptance from PS/UE variations for 3 jets	11%
$m_{bb}, p_{\rm T}^V$, from scale variations	S (correlated with ZZ uncertainties)
$m_{bb}, p_{\rm T}^V$, from PS/UE variations	S (correlated with ZZ uncertainties)
m_{bb} , from matrix-element variations	S (correlated with ZZ uncertainties)
WW	
Normalisation	25%

1 lepton channel Multijet estimation

Overview

- > Multi-jet backgrounds produced with very large cross-sections.
 - Despite not providing genuine leptonic signatures, still have the potential to contribute a non-negligible background component.
 - Difficult to model this background using MC simulation, data driven approach is needed to estimate this background.
- > The contributions to this background come from :
 - Real muons or electrons from heavy-flavour hadrons that undergo semileptonic decays.
 - Photons conversion (electron channel).

Lepton isolation requirements optimization

 The default lepton isolation requirements used in the previous analysis were not optimal, tested all the different isolation cuts (ptconeXX, ptvarconeXX, topoetconeXX, with XX=20,30) with signal and multijet MC samples.

• The optimized results are also tested and confirmed by the data-driven method.

Electron sub-channel								
Working Points	Signal events efficiency	multijet events efficiency	multijet events efficiency					
		(PYTHIA8 samples)	(Sherpa 2.2.1 multi b-jet samples)					
$\operatorname{FixCutTight}$	98%	$38\%\pm7\%$	$58\%~\pm~4\%$					
$E_T^{cone0.2} < 3.5{\rm GeV}$	95%	$10\%\pm4\%$	$11\%\pm2\%$					
		Muon sub-channel						
FixCutTrackOnly	99%	$97\%\pm2\%$	$94\%\pm2\%$					
$p_T^{Cone0.2} < 1.25{\rm GeV}$	95%	$29\%\pm8\%$	$31\%\pm5\%$					

MJ estimation – The whole picture

> MJ shape estimated by inverting the isolation requirements in 1 tag region .

 \succ MJ normalization extracted by fitting to m_T^W in 2-tag signal region.

- The template for the EW contribution in the signal region is obtained directly from MC predictions.
- The variable m_T^W is chosen as it offers the clearest discrimination between the multi-jet and EW processes.

The estimation performed separately in the electron and muon sub-channels, and in the 2- and 3-jet categories.
54

MJ estimation – Template fit

 Bins 1-21 correspond to the e only channel, bins 22 to 42 correspond to the μ only channel, and bins 21 and 42 represent the W + HF control region.

Region	Top $(t\bar{t} + \text{single top})$	W+jets
high p_T^V 2-tag, 2-jet	1.02 ± 0.02	1.27 ± 0.06
high p_T^V 2-tag, 3-jet	0.99 ± 0.006	1.13 ± 0.04

- Simultaneous fit of W+jet and top normalizations in the el and mu channel, with separate MJ normalizations.
- The m_T^W distributions of the W + jet and top quark backgrounds are sufficiently different that a common normalization factor induces a bias in the multi-jet estimate.
- In order to improve their relative separation, only overall yield used for the W + HF control region (one bin).

MJ estimation – Template fit

Sood data/MC agreement observed not only for the variable used for the template fit (m_T^W) , but also the other variables.

MJ estimation – Systematics uncertainties

- In generally the systematic uncertainties can have an impact on the multijet estimates in two ways :
- Change the mTW distributions used in the multi-jet template fits → impact the extracted multi-jet normalizations.
- Change the multi-jet BDT distributions used in the global likelihood fit directly → impact the multi-jet shape.
- Several sources of uncertainty are considered as listed below :
 - Use the alternative variables instead of m_T^W as the template fit variable.
 - Include the E_T^{miss} < 30 GeV region for electron channel.
 - Use a tighter single-electron trigger to probe a potential trigger bias in the isolation requirements.
 - Use a tighter isolation requirements to derive the MJ template.
 - Vary the normalization of the contamination from the top and V + jets processes in the multi-jet control region.

MJ estimation – Final results

 $2.76^{+2.06}_{-1.65}$

 $0.15^{+0.24}_{-0.15}$

 $0.43^{+1.10}_{-0.43}$

2-tag, 2-jet, μ

2-tag, 3-jet, e

2-tag, 3-jet, μ

The multi-jet contribution in the 2-jet region is found to be 1.91% (2.76%) of the total background contribution in the electron (muon) sub-channel, while in the 3-jet region it is found to be 0.15% (0.43%), with normalization uncertainties from 0.15% to 2.07%

Source of uncertainty	σ_{μ}
Total	0.259
Statistical	0.161
Systematic	0.203
Multi-jet	0.005

> MJ impact on the mu is very small

-60% / +75%

-100% / +160%

-100% / +260%

1 lepton channel MJ estimation

> Dedicated isolation WPs to further reduce MJ background

- Topoetcone20 <3.5GeV for electron channel;
- Ptcone20<1.25GeV for muon channel
- > Use inverted isolation region in 1 tag region to estimate MJ shape

> Use fit to mTW in 2-tag signal region to extract MJ normalization

- The template for the EW contribution in the signal region is obtained directly from MC predictions
- The variable mTW is chosen as it offers the clearest discrimination between the multi-jet and EW processes
- Main assumption: shape in inverted region accurately depicts that in SR
 - 1tag Vs. 2tag; inverted isolation requirements
- Systematics to cover this assumption
- Estimated separately in the electron and muon sub-channels, and in the 2- and 3-jet categories, using similar procedures

	MJ contamination (2-jet)	MJ contamination (3-jet)
e-channel	1.91%	0.15%
mu-channel	2.76%	0.43%

Data/Pred

0.5

50

100

150

200

m^W_T [GeV] 59

	0-le	pton	1-le	pton		2-1	epton	
	$p_{\mathrm{T}}^V > 150 \mathrm{C}$	GeV, 2-b-tag	$p_{\mathrm{T}}^{V} > 150 \mathrm{G}$	GeV, 2-b-tag	$75 GeV < p_{\rm T}^V$	< 150 GeV, 2-b	$p-tag = p_{\rm T}^V > 150 G$	GeV, 2-b-tag
Process	2-jet	3-jet	2-jet	3-jet	2-jet	\geq 3-jet	2-jet	\geq 3-jet
Z + ll	$17\pm~11$	$27\pm~18$	2 ± 1	3 ± 2	14 ± 9	49 ± 3	$2 4\pm 3$	30 ± 19
Z + cl	$45\pm$ 18	$76\pm~30$	3 ± 1	7 ± 3	$43\pm~17$	170 ± 6	$7 12 \pm 5$	$88\pm$ 35
Z + HF	4770 ± 140	5940 ± 300	180 ± 9	348 ± 21	7400 ± 120	14160 ± 22	$0 1421 \pm 34$	5370 ± 100
W + ll	$20\pm~13$	$32\pm~22$	$31\pm~23$	65 ± 48	< 1	< 1	< 1	< 1
W + cl	$43\pm~20$	$83\pm~38$	139 ± 67	$250\pm~120$	< 1	< 1	< 1	< 1
W + HF	$1000\pm~87$	1990 ± 200	2660 ± 270	5400 ± 670	2 ± 0	$13\pm$	1 ± 0	4 ± 1
Single top quark	368 ± 53	1410 ± 210	2080 ± 290	9400 ± 1400	188 ± 89	440 ± 20	$0 23 \pm 7$	$93\pm~26$
$t\bar{t}$	1333 ± 82	9150 ± 400	6600 ± 320	50200 ± 1400	3170 ± 100	8880 ± 22	104 ± 6	839 ± 40
Diboson	254 ± 49	$318\pm~90$	178 ± 47	$330\pm~110$	152 ± 32	355 ± 6	$8 52 \pm 11$	196 ± 35
Multi-jet <i>e</i> sub-ch.	_	_	100 ± 100	41 ± 35	_	_	_	—
Multi-jet μ sub-ch.	_	_	138 ± 92	$260\pm~270$	—	_	-	_
Total bkg.	$7850\pm~90$	19020 ± 140	12110 ± 120	66230 ± 270	10960 ± 100	24070 ± 15	$0 1620 \pm 30$	$6620\pm~80$
Signal (post-fit)	128 ± 28	128 ± 29	$131\pm~30$	125 ± 30	$51\pm~11$	86 ± 2	$2 \qquad 28 \pm 6$	67 ± 17
Data	8003	19143	12242	66348	11014	24197	1626	6686

	1-le	pton	2-lepton			
	$p_{\mathrm{T}}^{V} > 150 \mathrm{G}$	GeV, 2-b-tag	$75 GeV < p_{\mathrm{T}}^{V} <$	$< 150 GeV, 2\text{-}b\text{-} ext{tag}$	$p_{\mathrm{T}}^{V} > 150 \mathrm{C}$	GeV, 2-b-tag
Process	2-jet	3-jet	2-jet	\geq 3-jet	2-jet	\geq 3-jet
Z + HF	15.1 ± 1.4	33 ± 2.5	$2.5\pm~0.2$	2.1 ± 0.2	< 1	< 1
W + ll	2.1 ± 1.5	3.8 ± 2.6	—	—	—	—
W + cl	8.4 ± 4.1	13.5 ± 6.6	—	< 1	—	—
W + HF	498 ± 34	1044 ± 92	2.5 ± 0.3	8.4 ± 1.0	< 1	3.3 ± 0.4
Single top quark	23.8 ± 5.4	122 ± 23	189 ± 90	450 ± 210	22.4 ± 7.1	93 ± 27
$tar{t}$	68 ± 18	307 ± 77	3243 ± 98	8690 ± 210	107.3 ± 6.7	807 ± 37
Diboson	13.4 ± 3.7	22.6 ± 7.5	—	< 1	—	< 1
Multi-jet e sub-ch.	8.3 ± 8.5	3.6 ± 2.9	_	_	_	_
Multi-jet μ sub-ch.	6.9 ± 4.6	13 ± 13	_	_	_	—
Total bkg.	644 ± 23	1563 ± 39	3437 ± 58	9153 ± 95	130.1 ± 6.7	905 ± 27
Signal (post-fit)	< 1	2.3 ± 0.6	< 1	< 1	< 1	< 1
Data	642	1567	3450	9102	118	923

Significance

Signal strength	Sigr	Signal strength		p	0	Significance	
	5181		_	Exp.	Obs.	Exp.	Obs.
0-lepton	1	$1.04_{-0.32}^{+0.34}$	Q	$9.5 \cdot 10^{-4}$	$5.1 \cdot 10^{-4}$	3.1	3.3
1-lepton	1	$1.09^{+0.46}_{-0.42}$	8	$8.7 \cdot 10^{-3}$	$4.9 \cdot 10^{-3}$	2.4	2.6
2-lepton	1	$1.38^{+0.46}_{-0.42}$	4	$4.0 \cdot 10^{-3}$	$3.3 \cdot 10^{-4}$	2.6	3.4
$VH, H \rightarrow b\bar{b}$ combination	1 1	$1.16^{+0.27}_{-0.25}$	7	$7.3 \cdot 10^{-6}$	$5.3 \cdot 10^{-7}$	4.3	4.9
Channel	Signif	Significance		Channel		Significance	
	Exp.	Obs.				Exp.	Obs.
VBF+ggF	0.9	1.5		$H \to ZZ^* \to 4\ell$		1.1	1.1
$t\bar{t}H$	1.9	1.9		$\begin{array}{l} H \to \gamma \gamma \\ H \to b \bar{b} \end{array}$		1.9	1.9
VH	5.1	4.9				4.3	4.9
$H \rightarrow b\bar{b}$ combination	5.5	5.5 5.4		VH combined		4.8	5.3

VH MVA analysis : backgrounds pulls

Diboson

MJ

MJNorm_Mu_J3_BMin1

 $\textbf{0.19}\pm\textbf{0.90}$

 0.00 ± 0.95

VH MVA analysis : experimental systematics

Jet

B-Tagging

Lepton

VH MVA analysis : correlations

Correlation of NPs from data fit.

VH MVA analysis results

