

The Mass of the W Boson

(and, maybe, a few other selected topics)

Dave Waters

on behalf of the UCL-CDF group :

Dan Beecher, Ilija Bizjak, Ben Cooper, Mark Lancaster, Sarah Malik, Emily Nurse, Tom Riddick, Troy Vine

<u>1st March 2001 – 30th September 2011</u>

▶ 12 fb⁻¹ delivered to CDF and DØ \rightarrow ~10 fb⁻¹ good data on tape.

W Mass

W Mass

Force	Carrier	Mass	Lifetime			
EM	Photon	< 10 ⁻¹⁶ eV	stable			
Strong	Gluon	< few MeV	stable			
Weak NC	Z ⁰	91.1876 ± 0.0021 GeV	1/τ = 2.4952 ± 0.0023 GeV			
Weak CC	W±	80.399 ± 0.023 GeV	$1/\tau = 2.085 \pm 0.042 \text{ GeV}$ (directly measured : UCL CDF 2008)			
$\frac{\Delta M_{W}}{M_{W}} / \frac{\Delta M_{Z}}{M_{Z}} \approx 12 \qquad \frac{\Delta \Gamma_{W}}{\Gamma_{W}} / \frac{\Delta \Gamma_{Z}}{\Gamma_{Z}} \approx 22$						

• Electroweak standard model relates precisely known parameters and less well known parameters through radiative corrections :

Radiative corrections to M_w include those due to top and Higgs :

• Equivalently, measuring M_w and M_{top} places constraints on the missing piece, M_H .

 $M_H = 92^{+34}_{-26} \text{ GeV}$ (LEP EWWG, 2011)

- How do M_w and M_{top} inputs compare ?
- Current top mass precision :
 Δ(M_{TOP}) = 0.9 GeV (0.54%)
- Equivalent constraint on M_H would come from:

 $\Delta(M_W) = 6 \text{ MeV} (0.001\%)$

• The most important measurement for us to improve now is the W mass !

- Even after a Higgs discovery at the LHC, precision EWK measurements will enable powerful Standard Model consistency fits.
- May be possible to distinguish SM from MSSM and in general constrain the properties of new physics at higher mass scales.

$$p\overline{p} \to W(\to l\nu) + X$$

Lepton : Measure 4-vector as precisely as possible.

Hadronic Recoil :

Measure in transverse plane only

$$\vec{u}_T = \{u_x, u_y\}$$

Neutrino : Infer transverse momentum :

$$\vec{p}_T^v = -(\vec{p}_T^l + \vec{u}_T)$$

Transverse Mass :

$$M_T = \sqrt{2p_T^l p_T^v (1 - \cos(\Delta \phi^{lv}))}$$

- Fit to M_T around the Jacobian peak.
- Extremely good control of signal modelling, backgrounds & instrumental effects.
- Also extract independent information from lepton and neutrino p_T distributions.

- Selection efficiencies are *small* compared to cross-section analyses : 3% (Z) 12% (W).
- We are trading statistics for systematics tight fiducial and ID cuts.

• Use the best model on the market : RESBOS Landry et al. (2003)

$$\frac{d\sigma}{dp_T^{W/Z}} \sim f^{\text{PETURBATIVE}}(\alpha_s) \times f^{\text{NON-PETURBATIVE}}(\alpha_s, g_1, g_2, g_3)$$

• Constrain parameters using *our own* Z data :

 $X_{\overline{p}}$

 X_{n}

- PDF's sculpt kinematic distributions through the requirement that the charged lepton be central :
- Generate weighted event ensembles using PDF error sets :

Momentum Scale

- The heart of the CDF analysis is the extremely good p_T measurement from the tracker.
- Start with a detailed cosmic ray internal alignment of the 30,240 sense wires of the COT to an accuracy of ~5 μm

- Use fits to precisely known J/Ψ and Υ resonances spanning a large range of curvature.
- Fit the single hit resolution ~150 μm and the effect of the beam constraint.

E

• How do we precisely determine the electromagnetic calorimeter energy scale ?

- Transfer the precise momentum scale to the calorimeter by fitting the ratio *E/p* for electrons.
- Statistically precise.
- Hard ! Need to understand reconstruction of E and p in minute detail.

[2] Extract directly by fitting to precisely known **Z**→ee resonance.

- Relatively easy. No tracking.
- Statistically poorer.

- Do the 2 methods agree ?
- A very powerful cross-check .
- Run 1 : 3.9σ discrepancy never resolved.

- Precise control over all possible energy loss mechanisms is required.
- For example Landau-Pomeranchuk-Migdal (LPM) suppression of Bremsstrahlung for lowenergy photons :

Simulating Electrons : Material

• Transfer p-scale to E-scale using E/p :

• Need to worry about *non-linearity* when comparing scales determined from W's and Z's

Tom Riddick Ph.D. Thesis

- Z mass fits blinded until the p-scale (from J/ ψ and Y) and E-scale (from E/p) were finalised.
- Compare Z mass fits with PDG .
- Subsequently Z constraints are included in p/E-scale determinations.

• "Recoil" from (1) W/Z p_T (2) UE (3) overlapping MB events (4) lepton energy leakage/FSR.

- Good agreement between W data and simulation.
- Residual recoil modelling systematic ~ 6 MeV

Kinematic Distribution	Electron (MeV)	Muon (MeV)	P(χ²) (stat + syst)
Transverse Mass	80408 ± 19	80379 ± 16	28%
Lepton Transverse Momentum	80393 ± 21	80348 ± 18	13%
Neutrino p _T	80431 ± 25	80406 ± 22	49%
$P(\chi^2)$ (stat + syst)	49%	12%	

• All 6 fits are combined taking into account correlations : $P(\chi^2) = 25\%$

Source	Uncertainty (MeV)		
Lepton Energy Scale	7	←	Tom, Ilija
Lepton Energy Resolution	2		
Recoil Energy Scale	4	←	Sarah
Recoil Energy Resolution	4	←	Sarah
Recoil Corrections	2		
Backgrounds	3		
p _T (W) Model	5	←	Dan
PDFs	10	←	Dan
QED Radiation	4	←	Ilija
Total Systematic	15		
Statistical	12		
Total Uncertainty	19		

- Previous World Average (2009): M_w = 80399 ± 23 MeV
- ► Error reduced by ¹/₃

• Impact of Run 2 precision measurements of m_w and m_{top} :

 The W mass measurement can be further improved – for CDF only ¼ of the final dataset has been analysed. By how much ?

Run 2 Physics Workshop, 1999 →40 MeV with 2 fb⁻¹

Report of the Working Group on Precision Measurements

Conveners: Raymond Brock^a, Jens Erler^b, Young-Kee Kim^c, and William Marciano^d **Working Group Members**: William Ashmanskas^e, Ulrich Baur^f, John Ellison^g, <u>Mark Lancaster^h</u>, Larry Nodulmanⁱ, John Rha^j, David Waters^k, John Womersley^l

- Model systematics are becoming the limiting factor.
- New techniques or inputs required to reduce the PDF uncertainty on M_W .

In Other News ...

<u>σ(WW) (2004)</u>

- First significant hadron collider measurement.
- Led on to using WW as a Higgs search channel.

<u>σ(W+jets) (2008)</u>

- Total and differential cross-section measurements.
- An early test of "Parton Shower Matching" schemes.
- New experimental methods developed.

Exclusive Z Production

29th June 2012

- Our involvement in CDF is almost over. Mark continues to oversee final Standard Model measurements.
- UCL involvement has been wide and varied, but precision electroweak measurements are a major legacy of CDF :

