

Latest Results on Electron-antineutrino Disappearance at Daya Bay

Kam-Biu Luk

University of California, Berkeley

And

Lawrence Berkeley National Laboratory On Behalf of the Daya Bay Collaboration

应堆中微子军]

Seminar at Imperial College/UCL, 14 June 2012

Neutrino Mixing

Neutrino flavour eigenstates ≠ Mass eigenstates

Some Approaches For Measuring θ_{13}

• Accelerator-based v_e appearance experiments

$$P_{\mu e} = \sin^2 2\theta_{13} \sin^2 2\theta_{23} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_v}\right) + \text{terms}(\delta, \Delta m_{32}^2, \text{matter effect})$$

- Baseline O(100-1000 km), large detectors
- Some ambiguities exist in extracting a value for θ_{13}
- MINOS, NOVA, T2K, ...
- Reactor-based \overline{v}_e disappearance experiments

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_v}\right) + \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E_v}\right)$$

- Baseline O(1 km), no matter effect, small detectors
- Daya Bay, Double Chooz, RENO

Knowledge of θ_{13} Circa March 2012

Daya Bay

The Daya Bay Collaboration

olitical Map of the World, June 1999

Europe (2)

JINR, Dubna, Russia Charles University, Czech Republic

North America (16)

BNL, Caltech, Iowa State Univ., RPI, Siena, UC-Berkeley, UCLA, Univ. of Cincinnati, Univ. of Houston, Univ. of Wisconsin-Madison. Univ. of Illinois-Urbana-Champaign, Virginia Tech., William & Mary

Asia (20)

Beijing Normal Univ., Illinois Inst. Tech., LBNL, Princeton, Chengdu Univ. of Sci. and Tech., CGNPG, CIAE, Dongguan Univ. Tech., IHEP, Nanjing Univ., Nankai Univ., NCEPU, Shandong Univ., Shanghai Jiaotong Univ., Shenzhen Univ., Tsinghua Univ., USTC, Zhongshan Univ., Chinese Univ. of Hong Kong, Univ. of Hong Kong, National Taiwan Univ.,

National Chiao Tung Univ., National United Univ.

~230 Collaborators

Daya Bay Nuclear Power Complex

Production of Reactor \overline{v}_e

Fission processes in a nuclear core produce radio-nuclides that decay rapidly to yield a huge number of low-energy \overline{v}_e :

3 GW_{th} generates 6 × 10²⁰ \overline{v}_e per sec

• \overline{v}_e related to ²³⁵U, ²³⁹U, and ²⁴¹Pu :

- measure β spectrum using thermal neutron induced fission on the isotope
- convert β spectrum to $\overline{\nu}_e$ spectrum
- \overline{v}_e related to ²³⁸U :
 - \overline{v}_e spectrum is based on calculation

isotopes in samples

Detecting Reactor \overline{v}_e

• Use the inverse β -decay reaction in a liquid scintillator:

 $^{\sim 180 \mu s}$ $\rightarrow + p \rightarrow D + \gamma(2.2 \text{ MeV}) \quad (delayed signal)$ $\rightarrow + Gd \rightarrow Gd^*$

 $\sim 30 \mu s$ for 0.1% Gd \rightarrow Gd + γ 's(8 MeV) (delayed signal)

• Time- and energy-tagged signal is a good tool to suppress background events.

• Energy of
$$\overline{v}_e$$
 is given by:

 $E_v \approx T_{e+} + T_n + (m_n - m_p) + m_{e+} \approx T_{e+} + 1.8 \text{ MeV}$ 10-40 keV

From Bemporad, Gratta and Vogel

Determining $\theta_{1,3}$ With Reactor \overline{v}_e

 Look for disappearance of electron antineutrinos from reactors:

$$P(\overline{\nu}_e \to x) \approx \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right) + \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E}\right)$$

Daya Bay Calibration System of Antineutrino Detectors

3 Automatic calibration 'robots' (ACUs) on each detector

ACU-C ACU-A R=1.7725 m R=0

ACU-B

R=1 35m

Three axes: center, edge of target, middle of gamma catcher

3 sources for each z axis on a turntable (position accuracy < 5 mm):
⁶⁸Ge (2×0.511 MeV γ's; 10 Hz)
²⁴¹Am-¹³C neutron source (3.5 MeV n without γ; 0.5 Hz)
⁶⁰Co (1.173+1.332 MeV γ's; 100 Hz)
LED diffuser ball (500 Hz)

Assemble Antineutrino Detectors

Stainless Steel Vessel (SSV) in assembly pit

Install lower reflector

Install Acrylic Vessels

Install PMT ladders

Install top reflector

Install calibration units

Liquid Scintillators

- Gd (0.1%) + PPO (3 g/L) +
 bis-MSB (15 mg/L) + LAB
- 185-ton Gd-LS + 196-ton LS production
- Number of protons: (7.169±0.034) × 10²⁵ p per kg

Jan-11 Feb-11 Mar-11 Apr-11 May-11 Jun-11 Jul-11 Aug-11 Sep-11 Oct-11 Nov-11

Fill Antineutrino Detectors (ADs)

Move AD into tunnel

- Target mass is measured with:

 (1) 4 load cells supporting the 20-t ISO tank
 (2) Coriolis mass flow meters Absolute uncertainty: 0.02% Relative uncertainty: 0.02%
- Temperature is maintained constant
- Filling is monitored with in-situ sensors

Daya Bay Near Hall (EH1)

Getting Ling Ao Near and Far Halls Ready

EH 2 (Ling Ao Near Hall): Began operation on 5 Nov 2011

EH 3 (Far Hall): Started data-taking on 24 Dec 2011

Data Taking

- A. Comparison of two ADs :
 - 23 Sept. 2011 23 Dec. 2011
 - Side-by-side comparison of 2 detectors
 - Demonstrated detector systematics better than requirements.
 - Nucl. Instru. Meth. A685, 78 (2012)

B. First results on oscillation:

- 24 Dec. 2011 17 Feb. 2012
- All 3 halls with 6 ADs operating
- Observation of \boldsymbol{v}_e disappearance
- Phys. Rev. Lett. 108 (2012) 171803.

C. This updated analysis:

- 24 Dec. 2011 11 May 2012
- 2.5 times more data collected with the same configuration

Triggers & Their Performance

Discriminator threshold:

- ~0.25 p.e. for PMT signal

Triggers:

- AD: ≥ 45 PMTs (digital trigger)
 ≥ 0.4 MeV (analog trigger)
- Inner Water Cherenkov: ≥ 6 PMTs
- Outer Water Cherenkov: ≥ 7 PMTs (near)
 ≥ 8 PMTs (far)
- RPC: 3/4 layers in each module

Trigger rate:

- AD: < 280 Hz
- Inner Water Cherenkov: < 160 Hz
- Outer Water Cherenkov: < 200 Hz

Analysis Approach

- Multiple independent analyses to cross check results.
- Highlights of differences between analyses:
 - Energy calibration and reconstruction
 - Calibration source (⁶⁰Co, 'point' source)
 - Spallation neutron (full volume)
 - Antineutrino candidate selection/efficiency
 - Muon veto
 - Multiplicity cut
 - Background studies
 - Extraction of θ_{13}
- · Performed analyses with reactor flux blinded.
- All analyses yielded consistent results.

Singles Spectrum

Dominated by low-energy radioactivity

Sources: Stainless Steel (U/Th chains); PMTs (⁴⁰K, U/Th chains) Liquid scintillators (Radon/U/Th chains)

Measured rates: ~65 Hz in each detector (>0.7 MeV)

EH-3 AD3 Rate in Hz

Selecting Antineutrino (IBD) Candidates

Use Prompt + Delayed correlated signal to select antineutrino candidates.

Selection:

- Reject Flashers
- Prompt: 0.7 MeV $< E_p < 12$ MeV
- Delayed: 6.0 MeV < \dot{E}_d < 12 MeV
- Capture time: 1 μs < Δt < 200 μs
- Muon Veto:

Pool Muon: Reject 0.6 ms

AD Muon (>20 MeV): Reject 1 ms

- AD Shower Muon (>2.5GeV): Reject 1 s
- Multiplicity:

No other signal > 0.7 MeV in -200 µs to 200 µs of IBD.

From Bemporad, Gratta and Vogel

PMT Light Emission ('Flasher')

Entrie

Flashing PMTs:

- Instrumental background: ~5% of PMTS
- 'Shines' light to opposite side of detector
- Easily discriminated from normal signals

Neutron Capture Time

Consistent capture time measured in all detectors

Measured capture times imply relative H/Gd capture efficiency: <0.1% between detectors.

Multiplicity Cut

Ensure exactly one prompt-delayed coincidence

Uncorrelated background and IBD signals result in ambiguous prompt-delayed signals.

→ Reject all IBDs with >2 triggers above 0.7 MeV in -200µs to +200µs. Introduces ~2.5% IBD inefficiency, with negligible uncertainty.

Spatial Distributions of IBD candidates

Real data EH1-AD1

- After applying all IBD selection cuts.
- Vertices from IBD candidates are uniformly distributed within 3m-IAV.

Remaining Background

- Uncorrelated background
 - Accidentals: two uncorrelated events 'accidentally' pass the cuts and mimic IBD event.
- Correlated background
 - Muon spallation products
 - ⁹Li/⁸He
 - Fast neutron
 - Correlated signals from ²⁴¹Am-¹³C source
 - ¹³C(a,n)¹⁶O

Background: Accidentals

Two uncorrelated single signals mimic an antineutrino signal Rate and spectrum can be accurately predicted from singles data.

⁹Li

Background: ⁹Li/⁸He B-n Decays

β-n decay:

- Prompt: β-decay
- Delayed: neutron capture

- Generated by cosmic rays
- Long-lived
- Mimic antineutrino signal

Muon veto software cuts control B/S to ~0.3% (0.4%) for the far (near) hall.

Background: ²⁴¹Am-¹³C Source

Leakage (0.5Hz) of neutron source in ACU can mimic IBD via inelastic scattering and capture on elements in stainless steel.

Background: ¹³C(a,n)¹⁶O

¹³C (α , n) ¹⁶O $n + p \longrightarrow n + p$ (1) $n + {}^{12}C \longrightarrow n + {}^{12}C^*(4.4 \text{ MeV})$ $h + {}^{12}C + \Upsilon$ (2) ¹³C (α , n) ¹⁶O*(6.05 MeV) $h + {}^{16}O + \Upsilon$ (3) ¹³C (α , n) ¹⁶O*(6.13 MeV) $h + {}^{16}O + e^+ + e^-$ (4)

Example alpha rate in AD1	²³⁸ U	²³² Th	²³⁵ U	²¹⁰ Po
Bq	0.05	1.2	1.4	10

Potential alpha source: ²³⁸U, ²³²Th, ²³⁵U, ²¹⁰Po Each of them are measured in-situ: U&Th: cascading decay of Bi(or Rn) – Po – Pb ²¹⁰Po: spectrum fitting

Combining (a,n) cross-section, correlated background rate is determined.

Near Site: ≤0.08±0.04 per day Far Site: 0.04±0.02 per day

Daya Bay 13		oata So	ummary			
	AD1	AD2	AD3	AD4	AD5	AD6
Antineutrino candidates	69121	69714	66473	9788	9669	9452
DAQ live time (day)	127.5	5470	127.3763		126.2646	
Efficiency	0.8015	0.7986	0.8364	0.9555	0.9552	0.9547
Accidentals (/day)	9.73±0.10	9.61±0.10	7.55±0.08	3.05±0.04	3.04±0.04	2.93±0.03
Fast neutron (/day)	0.77±0.24	0.77±0.24	0.58±0.33	0.05±0.02	0.05±0.02	0.05 ± 0.02
⁸ He/ ⁹ Li (/day)	2.9±	-1.5	2.0±1.1		0.22±0.12	
Am-C corr. (/day)			0.2	2±0.2		
$^{13}C(\alpha, n)^{16}O(/day)$	0.08 ± 0.04	0.07 ± 0.04	0.05±0.03	0.04±0.02	0.04 ± 0.02	0.04 ± 0.02
Antineutrino rate (/day)	662.47 ±3.00	670.87 ±3.01	613.53 ±2.69	77.57 ±0.85	76.62 ±0.85	74.97 ±0.84

Total amount of background : ~5% (2%) in the far (near) hall

Reactor Flux Calculation

Antineutrino flux is estimated for each reactor core

Flux estimated using:

 $S(E_{\nu}) = \frac{W_{th}}{\sum_{i} (f_i/F)e_i} \sum_{i}^{istopes} (f_i/F)S_i(E_{\nu})$

Reactor operators provide:

- Thermal power data: W_{th}
- Relative isotope fission fractions: f_i

Energy released per fission: e_i V. Kopekin et al., Phys. Atom. Nucl. 67, 1892 (2004)

Antineutrino spectra per fission: $S_i(E_v)$

K. Schreckenbach et al., Phys. Lett. B160, 325 (1985) A. A. Hahn et al., Phys. Lett. B218, 365 (1989)

- P. Vogel et al., Phys. Rev. C24, 1543 (1981)
- T. Mueller et al., Phys. Rev. C83, 054615 (2011)
- P. Huber, Phys. Rev. C84, 024617 (2011)

Isotope fission rates vs. reactor burnup

Flux model has negligible impact on far vs. near oscillation measurement

Summary of Uncertainties

	Dete	ctor	
	Efficiency	Correlated	Uncorrelated
Target Protons		0.47%	0.03%
Flasher cut	99.98%	0.01%	0.01%
Delayed energy cut	90.9%	0.6%	0.12%
Prompt energy cut	99.88%	0.10%	0.01%
Multiplicity cut		0.02%	< 0.01%
Capture time cut	98.6%	0.12%	0.01%
Gd capture ratio	83.8%	0.8%	< 0.1%
Spill-in	105.0%	1.5%	0.02%
Livetime	100.0%	0.002%	< 0.01%
Combined	78.8%	1.9%	0.2%

For near/far analysis, only uncorrelated uncertainties are used.

	R	eactor		
Correlated		Uncorrelated		
Energy/fission	0.2%	Power	0.5%	
$\overline{\nu}_e$ /fission	3%	Fission fraction 0.6%		
		Spent fuel	0.3%	
Combined	3%	Combined	0.8%	

Input to near/far analysis and is reduced in the far vs near measurement. 41

Antineutrino Rate vs. Time

Detected rate strongly correlated with reactor flux expectations.

Predicted Rate:

- Normalization is determined by fit to near-hall data.
- Absolute normalization is within a few percent of expectations.

Far vs. Near Comparison : \overline{v}_e Rate

$$R = \frac{Far_{measured}}{Far_{expected}} = \frac{M_4 + M_5 + M_6}{\sum_{i=4}^{6} (\alpha_i (M_1 + M_2) + \beta_i M_3)}$$

 M_n : measured rates in each detector. Weights a_i, β_i : determined from baselines and reactor fluxes.

R = 0.944 ± 0.007 (stat) ± 0.003 (syst)

Clear observation of $\overline{\nu}_e$ deficit at the far site.

Rate-only Analysis

Measure θ_{13} using measured rates in each detector.

 $sin^2 2\theta_{13} = 0.089 \pm 0.010 (stat) \pm 0.005 (syst)$ Most precise measurement of $sin^2 2\theta_{13}$ to date.

Far vs. Near Comparison : Spectrum

Spectral distortion is consistent with oscillation.

Caveat: spectral systematic issues are not fully settled, extracting θ_{13} from spectra is not recommended.

Global Landscape of $sin^2 2\theta_{13}$

- **1** G.L. Fogli *et al.*, "Evidence of $\theta_{13} > 0$ from global neutrino data analysis," Phys. Rev. **D 84** (2011) 053007 arXiv:1106.6028
- P. Adamson *et al.*, "Improved Search for Muon-Neutrino to Electron-Neutrino Oscillations in MINOS," Phys. Rev. Lett. **107** (2011) 181802, arXiv:1108.0015
- 3 K. Abe *et al.*, "Indication of Electron Neutrino Appearance from an Accelerator-Produced Off-Axis Muon Neutrino Beam," Phys. Rev. Lett. **107** (2011) 041801, arXiv:1106.2822
- 4 Y. Abe *et al.*, "Indication of Reactor $\bar{\nu}_e$ Disappearance in the Double Chooz Experiment," Phys. Rev. Lett. **108**, 131801 (2012), arXiv:1112.6353
- F. P. An *et al.* "Observation of electron-antineutrino disappearance at Daya Bay," Phys. Rev. Lett. **108** (2012), 171803, arXiv:1203.1669
- 6 J. K. Ahn *et al.* "Observation of Reactor Electron Antineutrinos Disappearance in the RENO Experiment," Phys. Rev. Lett. **108** (2012) 191802, arXiv:1204.0626
- 7 T. Nakaya, "New Results from T2K," presented at Neutrino 2012 in Kyoto. Available at neu2012
- 8 Misaki Ishitsuka, "Double Chooz Results," presented at Neutrino 2012 in Kyoto. Available neu2012
- 9 D. Dwyer, "Improved Measurement of Electron-antineutrino Disappearance at Daya Bay," presented at Neutrino 2012 in Kyoto. Available at neu2012

Conclusions & Outlook

 Daya Bay has made an unambiguous observation of reactor electron-antineutrino disappearance at ~2 km from the source:

R = 0.944 ± 0.007 (stat) ± 0.003 (syst)

- Interpreting the disappearance as neutrino oscillation yields the most precise measurement of θ_{13} : $sin^2 2\theta_{13} = 0.089 \pm 0.010 (stat) \pm 0.005 (syst)$
- Install the last pair of antineutrino detectors this year.
- Daya Bay will continue to provide the most precise measurement of θ_{13} in the world.
- Pursue other physics, such as precise reactor $\overline{\nu}_e$ flux and spectrum, and $\Delta m^2{}_{31}.$

Prompt (Positron) Spectra

High-statistics reactor antineutrino spectra.

B/S ratio is 2% (5%) at near (far) sites.

