Lepton Flavour and Number Violation in Models with Left-Right Symmetry

LIC

Frank Deppisch f.deppisch@ucl.ac.uk

University College London

HEP Seminar, UCL London, May 18, 2012

1/23 Frank Deppisch

LFV and LNV in LRSM

Overview

Neutrinos

Neutrino Mass Generation

- Seesaw Mechanism
- SUSY Seesaw
- Left-Right Symmetry
- Lepton Flavour Violation
- Lepton Number Violation
- Signals at the LHC
- Conclusions

Neutrino Oscillations

Neutrino interaction states different from mass eigenstates Neutrino flavour can change through propagation

$$\nu_{i} = \sum_{\alpha} U_{i\alpha} \nu_{\alpha}, \quad \nu_{i}(t) = e^{-i(E_{i}t - p_{i}x)} \nu_{i}$$
$$\Rightarrow P_{\alpha \to \beta} = \sin^{2}(2\theta) \sin^{2} \left(1.27 \frac{\Delta m^{2}}{eV^{2}} \frac{L/km}{E/GeV} \right)$$

- Solar neutrino oscillations
 Large mixing
- Atmospheric oscillations

≈ Maximal mixing

Reactor and accelerator neutrinos Antineutrino disappearance at Daya Bay (& Reno)

$$\sin^2(2\theta_{13}) = 0.092 \pm 0.021$$

Absolute Neutrino Mass

LFV and LNV in LRSM

Seesaw Mechanism

• Add right-handed neutrinos to (MS)SM particle content, $M_R \approx 10^{14} \text{ GeV}$

$$W = W_{\text{MSSM}} - \frac{1}{2} \hat{v}_{R}^{cT} M_{R} \hat{v}_{R}^{c} + \hat{v}_{R}^{cT} Y_{\nu} \hat{L} \cdot \hat{H}_{u}$$

Integrate out heavy right-handed neutrinos

$$\begin{pmatrix} \mathbf{v}_L \\ \mathbf{v}_R^c \end{pmatrix} \begin{pmatrix} \mathbf{0} & m_D \\ m_D & M_R \end{pmatrix} \begin{pmatrix} \mathbf{v}_L \\ \mathbf{v}_R^c \end{pmatrix}^T \quad \text{with} \quad m_D = Y_{\mathbf{v}} \langle H_u^0 \rangle \ll M_R$$

Effective light neutrino mass matrix at low energies

$$m_v = m_D^T M^{-1} m_D$$
 for $m_D \ll M_R$ $m_v \approx 0.1 \text{eV} \left(\frac{m_D}{100 \text{ GeV}}\right)^2 \left(\frac{M_R}{10^{14} \text{ GeV}}\right)^{-1}$

Seesaw Mechanisms

Problems of Seesaw Mechanism

- Introduces high energy scale
- Right-handed neutrinos are singlets
 Couple only via small mixture with active neutrinos
- Mechanism not testable with low energy observables
- Possible Solutions
 - SUSY Seesaw Testable LFV effects on sleptons
 - Bended Seesaw mechanisms
 LNV at low scale allows low mass
 right-handed neutrinos
 - Left-Right symmetry models Right-handed neutrinos couple with gauge strength to charged leptons

Minimal Left-Right Symmetrical Model

Based on

$$SU(3) \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$$

Pati & Salam '74 Mohapatra & Senjanovic '75

- Higgs Sector: Bidoublet (EW Breaking)
 + Left-handed Triplet + Right-handed Triplet (Breaking Lepton Number + Parity + SU(2)_R)
- Generating r.h. Neutrino + WR + ZR masses

$$M_{N_i} \approx M_{W_R} \approx M_{Z_R} \approx < \Delta_R >$$

Charged current weak interactions

$$J_W^{\mu-} = \frac{g_L}{\sqrt{2}} \left(\bar{\nu} U_{LL} + \bar{N}^c U_{LR} \right) \gamma^{\mu} e_L + \frac{g_R}{\sqrt{2}} \sin \zeta_W \left(\bar{\nu} U_{RL} + \bar{N} U_{RR} \right) \gamma^{\mu} e_R,$$

$$J_{W'}^{\mu-} = -\frac{g_L}{\sqrt{2}} \sin \zeta_W \left(\bar{\nu} U_{LL} + \bar{N} U_{LR} \right) \gamma^{\mu} e_L + \frac{g_R}{\sqrt{2}} \left(\bar{N} U_{RR} + \bar{\nu}^c U_{RL} \right) \gamma^{\mu} e_R,$$

Charged Lepton Flavour Violation

Lepton flavour practically conserved in the Standard Model

$$Br(\mu \to e \gamma) = \frac{3 \alpha}{32 \pi} \left| \sum_{i} U_{\mu i}^{*} U_{e i} \frac{\Delta m_{1 i}^{2}}{m_{W}^{2}} \right|^{2} \approx 10^{-56}$$

LFV is clear sign for BSM physics

- Flavour violation in quark and neutrino sector
 Strong case to look for charged LFV
- LFV can shed light on
 - Grand Unification models
 - Flavour symmetries
 - Origin of flavour

Rare LFV Processes

Current bounds

- Br($\mu \rightarrow e\gamma$) < 2.4.10⁻¹² (MEG)
- Br($\tau \rightarrow \mu \gamma$) < 4.4.10⁻⁸ (BaBar) 10⁻⁹ (Super-B Factory)
- Br($\tau \rightarrow e \gamma$) < 3.3.10⁻⁸ (BaBar) 10⁻⁹ (Super-B Factory)
- $R(\mu N \rightarrow e N) < 7.10^{-13}$ (Sindrum)
- $\mu \rightarrow 3e$, $\tau \rightarrow 3\mu$ (LHC?), etc.

and future sensitivities

- 10⁻¹³ (MEG, 2009)

- 10^{-16} (COMET), μ –*e* conversion in nuclei

Correlation between processes of same flavour transition

10/23 Frank Deppisch

LFV and LNV in LRSM

Rare LFV Processes in the LRSM

 Mediated by right-handed neutrinos and doubly charged Higgs bosons

$$\mathrm{BR}(\mu \to e\gamma) \approx 2 \times 10^{-9} \sin^2(2\phi) \left(\frac{\Delta m_{12}^2}{m_{W_R}^2}\right)^2 \left(\frac{2 \text{ TeV}}{m_{W_R}}\right)^4.$$

μ-e conversion in nuclei enhanced
 via box diagrams

$$R(\mu \rightarrow e) \approx BR(\mu \rightarrow e \gamma)$$

• $\mu \rightarrow eee$ strongly enhanced due to tree level contribution

$$BR(\mu \rightarrow eee) \approx 300 \times R(\mu \rightarrow e)$$

11/23 Frank Deppisch

LFV and LNV in LRSM

Neutrinoless Double Beta Decay

- Process: $(A, Z) \rightarrow (A, Z+2) + 2e^{-1}$
- Uncontroversial detection of 0vββ of utmost importance
 - Prove lepton number to be broken
 - Prove neutrinos to be Majorana particles (Schechter, Valle '82)

Heidelberg-Moscow $T_{1/2}(^{76}Ge) \approx 1.9 \cdot 10^{25} \text{ y}$ $\langle m_{\nu} \rangle \approx (0.3 - 0.6) \text{ eV}$

• Which mechanism triggers the decay?

Light Neutrino Exchange (LH Current, Mass Mechanism)

General Effective Operator

Neutrinoless Double Beta Decay in the LRSM

Dilepton signals at the LHC in the LRSM

14/23 Frank Deppisch

LFV and LNV in LRSM

Single Right-handed Neutrino Production

		Opj	pos	ite S LH	Bigr C re	n + S each	3						Section 1							
	n	umbe	er of j	ets		$N_{}$	$j_j \ge 2$						\sum^{2}			200	102		12	
nur	nber	of is	olate	d lepto	ons	N_{i}	$\ell_\ell = 2$						Te'	1		NITIO	10	5σ	1 904	%
in	ivaria	ant d	ilepto	on mas	5S 1	$m_{\ell\ell} >$	300	GeV					<i>N</i> ш 1	K	103					
	tota	l inva	riant	mass	r	$n_{\ell\ell jj}$:	> 1.5			1	* _			-4GeV		i	0			
		0.7	a F	0.0	0 F	~~	0 F			a P					K	10) ⁻⁶ GeV	1,		_
		OS, SF		OS,	OF	SS,	OF,		SS, SF				0			٢				_
		e^+e^-	$\mu^+\mu^-$	$e^+\mu^-$	$e^-\mu^+$	$e^+\mu^+$	$e^{-}\mu^{-}$	e^+e^+	e^-e^-	$\mu^+\mu^+$	$\mu^-\mu^-$			1	2		3		4	
	$t + \bar{t}$	190	170	149	164	$\lesssim 10$	$\lesssim 10$	$\lesssim \! 10$	$\lesssim 10$	$\lesssim \! 10$	$\lesssim 10$	ļĻ				m	W_R [Te	eV]		_
	Z + j	181	187	0	2	0	0	$\lesssim 10$	$\lesssim 10$	$\lesssim \! 10$	$\lesssim 10$					Â	LAS e	exclus	sion	0
Si	ignal	289	192	228	230	330	108	204	74	146	45									
Eff.	. [%]	51	33	42	43	41	41	49	50	35	32									

15/23 Frank Deppisch

LFV and LNV in LRSM

2.1 fb⁻¹

5

Lepton Flavour Violation

- Single r.h. Neutrino Exchange
- Maximal mixing of r.h. neutrino to e and μ only

LHC reach @ 14 TeV, 30 fb⁻¹

16/23 Frank Deppisch

Single Right-handed Neutrino Production

- Two neutrinos exchanged with maximal mixing and 1% mass splitting
- Correlation with low energy LFV processes

LHC reach @ 14 TeV, 30 fb⁻¹

- Two neutrinos exchanged with maximal mixing and 1% mass splitting
- Correlation with low energy LFV processes

LHC reach @ 14 TeV, 30 fb⁻¹

- Two neutrinos exchanged with maximal mixing and 1% mass splitting
- Correlation with low energy LFV processes

LHC reach @ 14 TeV, 30 fb⁻¹

- Two neutrinos exchanged with maximal mixing and 1% mass splitting
- Correlation with low energy LFV processes
- Low energy LFV processes
 GIM suppressed as

$$\Delta m_N^2 / m_{W_R}^2$$

 On-shell production suppressed as

$$\Delta m_N^2 I(m_N \Gamma_N)$$

Lepton Number Violation

- Correlation with neutrinoless double beta decay
- Contributions from triplet Higgs and heavy neutrinos

LHC reach @ 14 TeV, 30 fb⁻¹

22/23 Frank Deppisch

LFV and LNV in LRSM

Conclusion

- Neutrinos much lighter than other fermions
 Strong experimental program to probe absolute mass
 Mechanism of mass generation?
 What about charged lepton flavour violation?
- High Energy Seesaw Mechanism not testable
 Consider alternatives with lower masses and stronger couplings?
- Seesaw Mechanism in Left-Right Symmetry Models
 Strong interplay with low energy LFV and LNV processes
- LHC still has chance to probe individual flavour couplings

Including couplings to taus

24/23 Frank Deppisch

LFV and LNV in LRSM