# Neutrino Dynamics in Big Bang Nucleosynthesis

Evan Grohs University of California Berkeley

13 Sep 2019

Extraordinary Seminar: University College London



# V \* \* \* N3AS ^

#### Contributors:

George Fuller Luke Johns Chad Kishimoto Alexey Vlasenko

Daniel Blaschke Vincenzo Cirigliano Mark Paris Shashank Shalgar



# Network for Neutrinos, Nuclear Astrophysics

## and Symmetries

- Funded by National Science Foundation
- ✤ 11 Institutions headquartered in Berkeley, CA.
  - 10 Universities
  - > 1 National Laboratory
- 8 postdoctoral research fellows
- Research thrusts including
  - Nucleosynthesis and the origin of the elements
  - Neutrinos and fundamental symmetries
  - Dense matter
  - Dark matter



## Outline and preliminaries

- Observational Cosmology
  - > The coming era of precision cosmology
  - Neutrino observables
  - > Current status and future goals
- Big Bang Nucleosynthesis
  - > Overview
  - > Weak decoupling
  - Neutron-to-proton rates
  - > Neutron life time
- Neutrino Quantum Kinetics
  - > Generalized Neutrino Density Matrices
  - > Preliminary Calculations
- Summary and future work

Useful constructs:  $T_{
m cm} \propto 1/a$   $\epsilon \equiv E_{
u}/T_{
m cm}$   $dn \sim d^3 p f(\epsilon)$ Fermi-Dirac Equilibrium

(non-degenerate):

 $f^{(\mathrm{FD})}(\epsilon) = \frac{1}{\epsilon}$ 

# The coming era of precision cosmology

- I. Cosmic Microwave Background Experiments
  - A. CMB Stage IV: Simons Observatory & South Pole Observatory
  - B. Other Ground-Based CMB experiments: CLASS and QUIET
  - c. Future satellites: PICO & LiteBIRD

#### II. Thirty-meter class telescopes

- A. EELT and GMT Atacama
- B. TMT Site to be determined

#### III. Surveys

- A. DES Cerro Tololo, Chile
- B. DESI Kitt Peak, AZ
- c. LSST Cerro Pachón, Chile











Primordial Helium Mass Fraction CMB Polarization data Simons Observatory/Future Satellites

 $\Sigma m_{\nu}$ 

 $N_{\rm eff}$ 

**Neutrino Energy Density** 

High-& Temperature Data

SPT & SO

Sum of the light neutrino masses Large Scale Structure/Lensing CMB Stage-IV & DESI



<u>5 Observables in</u> Neutrino Cosmology

Deuterium Abundance QSO Absorption Lines Thirty-Meter Class Telescopes

 $\omega_b$ 

Baryon Density Temperature Power Spectrum CMB Stage IV

#### Cosmological Neutrino Observables: Current Status

Baryon Density, Planck VI, 2018

 $\omega_b = 0.02242 \pm 0.00014 \,(1\sigma)$ 

Number of relativistic degrees of freedom, Planck VI, 2018

 $N_{\rm eff} = 2.99^{+0.34}_{-0.33} \ (2\sigma)$ 

Sum of the Neutrino Masses, Planck VI, 2018

 $\Sigma m_{\nu} < 120 \,\mathrm{meV} \,(2\sigma)$ 

Primordial Mass Fraction of Helium, Aver et al, 2015

 $Y_{\rm P} = 0.2449 \pm 0.0040 \ (1\sigma)$ 

Primordial Abundance of Deuterium, Cooke et al, 2018  $10^5 ({\rm D/H}) = 2.527 \pm 0.030 \ (1\sigma)$ 

## BBN Epochs of Interest

Equilibrium initial conditions
Nonequilibrium evolution



# Weak Decoupling: Overview

- 1. Initially: neutrinos at the same temperature as electrons and positrons
- 2. Electrons and positrons annihilate to produce photon pairs, slightly raising temperature of plasma
- 3. Two processes create heat flow between neutrinos and plasma

$$\begin{array}{c} \nu_i + e^{\pm} \leftrightarrow \nu_i + e^{\pm} \\ \nu_i + \overline{\nu}_i \leftrightarrow e^{-} + e^{+} \end{array} \right\} \quad \begin{array}{c} \text{Charged Current } (\nu_e) \\ \text{Neutral Current } (\nu_e, \nu_\mu, \nu_\tau) \end{array}$$

4. Three processes redistribute energy within neutrino seas

 $\nu_{i} + \nu_{j} \leftrightarrow \nu_{i} + \nu_{j}$  $\nu_{i} + \overline{\nu}_{j} \leftrightarrow \nu_{i} + \overline{\nu}_{j}$  $\nu_{i} + \overline{\nu}_{i} \leftrightarrow \nu_{j} + \overline{\nu}_{j}$ 

5. End result: neutrinos cooler than photons



#### **Differential Visibility of Neutrino-Electron Scattering**

Out-of-Equilibrium Neutrino Transport  $\nu_i + \overline{\nu}_i \leftrightarrow e^- + e^+$   $\nu_i + e^\pm \leftrightarrow \nu_i + e^\pm$ 

Red contours of constant differential visibility for electron flavor

$$\frac{\Gamma_{\nu_i}}{H}e^{-\tau_{\nu_i}}$$

High  $T_{\rm cm}$  Low  $T_{\rm cm}$  $\tau_{\nu_i} >> 1$   $\Gamma'_{\nu_i} << H$ 



#### Entropy flows



Entropy flow out of the plasma into the neutrino seas

Charged leptons are hotter than neutrinos

Total entropy in the universe increases





#### Neutron to proton rates I

 $v_e$  capture on neutron, normalized to neutron lifetime

$$\nu_e + n \leftrightarrow p + e^-$$
$$e^+ + n \leftrightarrow p + \overline{\nu}_e$$
$$n \leftrightarrow p + \overline{\nu}_e + e^-$$

$$\begin{split} \lambda_{\nu_e n \to p e^-} &= \frac{G_F^2 (1 + 3g_A^2)}{2\pi^3} \int_0^\infty dE_\nu C(E_\nu + \delta m_{np}) Z(E_\nu + \delta m_{np}, E_\nu) \\ &\qquad \times E_\nu^2 (E_\nu + \delta m_{np}) \sqrt{(E_\nu + \delta m_{np})^2 - m_e^2} \\ &\qquad \times [f_{\nu_e} (E_\nu)] [1 - g_{e^-} (E_\nu + \delta m_{np})] \\ \\ &\frac{1}{\tau_n} = \frac{G_F^2 (1 + 3g_A^2)}{2\pi^3} \int_0^{\delta m_{np} - m_e} dE_\nu C(\delta m_{np} - E_\nu) Z(\delta m_{np} - E_\nu, E_\nu) \\ &\qquad \times E_\nu^2 (\delta m_{np} - E_\nu) \sqrt{(\delta m_{np} - E_\nu)^2 - m_e^2} \end{split}$$

#### Neutron to proton rates II



#### <u>Neutron to proton ratio – Primordial Helium</u>

Equilibrium:

$$\mu_{\nu_e} + \mu_n = \mu_p + \mu_{e^-}$$
$$n/p = \exp\left[-\frac{\delta m_{np}}{T} + \phi_e - \xi_{\nu_e}\right]$$

Common Approximation at late times after Weak Freeze-Out (WFO):

$$n/p(t) = e^{-\delta m_{np}/T_{\rm WFO}} e^{-(t-t_{\rm WFO})/\tau_n}$$

 $T_{\rm WFO} \simeq 0.7 \, {\rm MeV}$ How Accurate is the WFO approximation?

$$Y_{\rm P} \simeq \frac{2n/p}{1+n/p} \bigg|_{\rm f.o.}$$



Deviation from Baseline

arXiv: 1607.02797



#### Helium vs. Neutron lifetime



#### **Beyond the Boltzmann Approach**

#### *Mass* eigenbasis is not coincident with *Weak* eigenbasis

- 1. Unitary Transformation in vacuum: PMNS matrix
- 2. Neutrinos oscillate between weak eigenstates
- 3. Generalized density matrix for neutrino ensemble

 $\theta_{23}, \theta_{13}, \theta_{12}$ 

$$U = U_{23}U_{13}U_{12}$$

Mixing angles:

$$_{2} = \begin{vmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

 $U_1$ 

normal mass hierarchy inverted mass hierarchy  $\nu_{\tau}$  $\nu_3$  $\nu_{\mu}$   $\nu_{\tau}$   $\nu_{2}$  $\delta m_{\odot}^2$  $\delta m^2_{\rm atm}$  $\nu_{\mu}\nu_{\tau}$   $\nu_1$  $m_{
u}^2$  $\delta m_{\rm atm}^2$  $\nu_{\tau}$  $\nu_2$  $\delta m_{\odot}^2$  $\nu_{\mu}\nu_{\tau}$   $\nu_{1}$  $\nu_{\tau}$  $\nu_3$ 

Mass squared differences:  $\delta m_\odot^2 = 7.5 \times 10^{-5} \, {\rm eV}^2$   $\delta m_{\rm atm}^2 = 2.6 \times 10^{-3} \, {\rm eV}^2$  c/o George Fuller

#### **Neutrino Density Matrices**

Neutrinos:  $F = F(x, \vec{p})$ Antineutrinos:  $\overline{F} = \overline{F}(x, \vec{p})$ 

Generalized  $2n_f \times 2n_f$ density matrices

n<sub>f</sub>: number of flavors 2 helicity states

 $f_{LL}^{ii}$ : occupation numbers  $F = \begin{bmatrix} f_{LL} & f_{LR} \\ f_{LR}^{\dagger} & f_{RR} \end{bmatrix} \begin{array}{c} f_{LL} & \text{occupation} \\ f_{LL}^{ij} & \text{flavor coherence} \\ f_{LR} & \text{spin coherence} \\ f_{DR} & \text{spin coherence} \\ f_{DR} & \text{spin coherence} \end{array}$  $f_{BB}$ : opposite helicity

#### **QKEs in the Early Universe**

See Sigl & Raffelt (1993); Vlasenko, Fuller, & Cirigliano (2013); Blaschke & Cirigliano (2016)

Change array dimensions (Majorana or Dirac):

$$\{f_i(\epsilon)\}, \{\overline{f}_i(\epsilon)\} \to f_{ij}(\epsilon), \overline{f}_{ij}(\epsilon)$$

Equations of motion for neutrinos:

$$\frac{df}{dt} = -i[H, f]_{-} + C[f]$$

2 Generalized 3 × 3 density matrices (no spin coherence)

H: Hamiltonian-like potential (coherent)

 $\hat{C}$ : Collision term from Blaschke & Cirigliano (2016)

 $\rightarrow$  Nonlinear coupled ODEs



#### Freeze-Out Spectra

Full collision term vacuum Potential in QKE calc.

Full collision term in Boltzmann transport calc.

Preliminary Calc.

# Concurrent epochs of BBN Concurrent evolution



Weak interactions between leptons

Weak interactions between leptons and baryons

EM interactions between leptons and photons

Strong and EM interactions between baryons and photons

### Summary and future work

- 1. Neutrino cosmology
  - a)  $N_{\rm eff}$  and  $\Sigma m_{\nu}$ : energy densities
  - b) D/H and  $Y_P$ : convolution in rates
- 2. Weak Decoupling & Weak Freeze-Out
  - a) Neutrino spectra influence n/p
  - b) Neutron lifetime may be important

#### 3. Quantum Kinetic Equations

- a) Coherent terms up to  $G_F^2$
- b) Collisions with  $e^{\pm}$ ,  $\nu$ ,  $\overline{\nu}$  up to  $G_F^2$
- 4. Future calculations
  - a) QKEs for transport:  $N_{eff}$
  - b) Charged-Current QKES: Abundances



Observations will drive the Theory!