Recent results from searches for Supersymmetry at ATLAS

Boosting the sensitivity with the full 13 TeV dataset

Moritz Backes¹ (University of Oxford, UK)

HEP Seminar University College London

3 November 2017

¹Moritz.Backes@cern.ch

Open Questions of the Standard Model

 Hierarchy problem: Higgs mass subject to quadratically divergent loop corrections.
 Incredible fine-tuning

Grand unification: Standard Model coupling constants do not unify at high scales.
 → SM does not imply a Grand Unified Theory

 Dark matter: Cosmological data suggest presence of dark matter → No explanation within Standard Model

Never tired of analogies...

Never tired of analogies...

We need... Supersymmetry (SUSY)

- Fundamental symmetry between fermions and bosons introducing a set of new partner particles to the SM particles with half-spin difference.
- ✓ Opposite-sign loop corrections from SUSY particles. Quadratic divergencies cancel. → No (little) fine-tuning.
- ✓ If R-parity conserved: Lightest SUSY Particle (LSP) stable. → Natural candidate for dark matter.

R-parity = (-1)^{3(B-L)+2s} • SM particles: +1 • SUSY particles: -1

✓ Unification of gauge couplings at $M_{GUT} \approx 10^{16} \text{ GeV}$

Not just any SUSY...

- Higgs boson discovery and strong experimental bounds have put vanilla SUSY under pressure
- Within the MSSM stop and gluino masses enter at 1 and 2 loop level into the Higgs mass matrix, the Higgsino mass parameter µ at tree level
- → Search efforts focus around "Natural SUSY" (e.g. arXiv:1110.6926) with relatively light gluinos, stops, higgsinos (remaining SUSY particles can be decoupled at high masses)

How to search for SUSY at the LHC

- If SUSY particles exist at LHC accessible energies:
 - ① R-parity conservation
 - Pair-production via strong / EW interaction
 - Direct or cascade decays to the stable lightest SUSY particle (LSP).
 - Many high p_T SM decay products + large E_{T,miss} (depending on the mass spectrum)
 - ② R-parity violation
 - Multi-jets / multi-leptons signatures from LSP decay to SM particles
 - Displaced vertices from late LSP decays

③ Long-lived particles

- Sparticles produced with long lifetimes due to mass degeneracy, small couplings, virtuality
- Secondary decay vertex
- Search strategy @ 13 TeV:
 - → First data: Gluino & 1st/2nd generation squark searches have the largest potential due to enhanced cross-sections
 - → Beyond ~10 fb⁻¹: Searches for 3rd generation squarks and EW production start to exceed Run-1 sensitivity

03/11/17

Tools & building blocks...

The ATLAS Experiment in Run-2

 + New innermost pixel layer (IBL) @ 3.3 cm from the beam line → additional 4th space-point measurement

- + Upgraded trigger/DAQ system (improved bandwidths 75 kHz →100 kHz @ L1 & 1-1.5 kHz @ HLT)
- + Improved offline reconstruction & analysis software

+ ...

The ATLAS Experiment in Run-2

ic end-cap and

rimeters

- SUSY searches rely strongly on new IBL:
 - b-tagging crucial for many SUSY analyses: Improvements of a factor of 2 and more in light-flavour / c-jet rejection
 - Searches for long-lived particles: Improved track / secondary vertex reconstruction

=70% 2200 ATLAS Simulation Preliminary َے 2000 \s=8,13 TeV , tt **e**1) 1800 Light-flavour jet rejection for 1600 hckei MV1c Run-1 1400 MV2c20 Run-2 1200 1000 ed 800 -1.5 600 400 200 Run-2 / Run-1 vsis 250 350 400 100 200 300 Jet p_{_} [GeV]

+ New innermost pixel layer (IBL) @ 3.3 cm from the beam line \rightarrow additional 4th space-point measurement

25

Data-taking 2015/2016

- Outstanding performance of the LHC in 2016:
 - 1680 hours of 13 TeV stable beams data-taking in 2016!
 - Peak instantaneous luminosity of 1.38
 x 10³⁴ cm⁻² s⁻¹
 - Pile-up of up to **50** interactions per crossing
- Excellent Run-2 data-taking campaign for ATLAS:
 - 3.9 fb⁻¹ + 35.6 fb⁻¹ recorded in 2015 + 2016
 - In total 36.1 fb⁻¹ (i.e. 91.4%) good for SUSY searches!
- Another ~43 fb⁻¹ of data from 2017 (taken at record pile-up / luminosities conditions) on tape for future searches!!

Mean Number of Interactions per Crossing

Trigger Performance Highlights

- ATLAS trigger and DAQ systems form the basis for a successful data-taking
- Major challenge in 2016: Maintain trigger performance in fierce luminosity & pile-up conditions
- Main physics triggers for SUSY searches: Generic E_{T,miss}, jet, lepton triggers

Di-electron triggers

HLT_e17_lhvloose_nod0

100

120

Offline electron E_{τ} [GeV]

140

Data

60

Z→ ee MC

80

1.4

1.2

0.8

0.6

0.4

0.2

20

40

ATLAS Internal

Data 2016, √s = 13 TeV, 33.5 fb⁻¹

Trigger Efficiency

Detector Performance Highlights

Moritz Backes

Blueprint of a vanilla SUSY search

- 1 Build signal regions (SRs) based on requirements on signal / background discriminating variables to target specific SUSY event topologies. Optimised for discovery & exclusion.
- (2)Determine Standard Model background in the SRs:

Discriminating variables in a nutshell

ATLAS SUSY Searches: Status August '16

ATLAS SUSY Searches* - 95% CL Lower Limits Status: August 2016 $\sqrt{s} = 7.8 \text{ To} \sqrt{s} = 13 \text{ To} \sqrt{s} = $								ATLAS Preliminary $\sqrt{s} = 7, 8, 13 \text{ TeV}$	
	Model	<i>e</i> , μ, τ, γ	⁄ Jets	E _T	∫ <i>L dt</i> [fb	⁻¹] Mass limit V 3 =	<i>i</i> , o ie	v vs = 15 le	Reference
Inclusive Searches	$\begin{array}{l} \text{MSUGRA/CMSSM} \\ \bar{q}\bar{q}, \bar{q} \rightarrow q \bar{k}_{1}^{0} \\ \bar{q}\bar{q}, \bar{q} \rightarrow q \bar{k}_{1}^{0} \\ \bar{q}\bar{q}, \bar{q} \rightarrow q \bar{k}_{1}^{0} \\ \bar{g}\bar{s}, \bar{s} \rightarrow q \bar{q} \bar{k}_{1}^{0} \\ \bar{g}\bar{s}, \bar{s} \rightarrow q \bar{q} \bar{k}_{1}^{0} \\ \bar{g}\bar{s}, \bar{s} \rightarrow q q \bar{k}_{1}^{1} \rightarrow q g W^{\pm} \bar{k}_{1}^{0} \\ \bar{g}\bar{s}, \bar{s} \rightarrow q q \ell \ell \ell / \nu \nu \bar{k}_{1}^{0} \\ \bar{g}\bar{s}, \bar{s} \rightarrow q q \ell \ell \ell / \nu \nu \bar{k}_{1}^{0} \\ \bar{g}\bar{s}, \bar{s} \rightarrow q \ell \ell \ell / \nu \nu \bar{k}_{1}^{0} \\ \bar{g}\bar{s}, \bar{s} \rightarrow q \ell \ell \ell / \nu \nu \bar{k}_{1}^{0} \\ \bar{g}\bar{s}, \bar{s} \rightarrow q \ell \ell \ell / \nu \nu \bar{k}_{1}^{0} \\ \bar{g}\bar{s}, \bar{s} \rightarrow q \ell \ell \ell / \nu \nu \bar{k}_{1}^{0} \\ \bar{g}\bar{s}, \bar{s} \rightarrow q \ell \ell \ell / \nu \nu \bar{k}_{1}^{0} \\ \bar{g}\bar{s}, \bar{s} \rightarrow q \ell \ell \ell / \nu \nu \bar{k}_{1}^{0} \\ \bar{g}\bar{s}, \bar{s} \rightarrow q \ell \ell \ell / \nu \nu \bar{k}_{1}^{0} \\ \bar{g}\bar{s}, \bar{s} \rightarrow q \ell \ell \ell / \nu \nu \bar{k}_{1}^{0} \\ \bar{g}\bar{s}, \bar{s} \rightarrow q \ell \ell \ell / \nu \nu \bar{k}_{1}^{0} \\ \bar{g}\bar{s}, \bar{s} \rightarrow q \ell \ell \ell / \nu \nu \bar{k}_{1}^{0} \\ \bar{g}\bar{s}, \bar{s} \rightarrow q \ell \ell \ell / \nu \nu \bar{k}_{1}^{0} \\ \bar{g}\bar{s}, \bar{s} \rightarrow q \ell \ell \ell / \nu \nu \bar{k}_{1}^{0} \\ \bar{g}\bar{s}, \bar{s} \rightarrow q \ell \ell \ell / \nu \nu \bar{k}_{1}^{0} \\ \bar{g}\bar{s}, \bar{s} \rightarrow q \ell \ell \ell / \nu \nu \bar{k}_{1}^{0} \\ \bar{g}\bar{s}, \bar{s} \rightarrow q \ell \ell \ell / \nu \nu \bar{k}_{1}^{0} \\ \bar{g}\bar{s}, \bar{s} \rightarrow q \ell \ell \ell / \nu \nu \bar{k}_{1}^{0} \\ \bar{g}\bar{s}, \bar{s} \rightarrow q \ell \ell \ell / \nu \nu \bar{k}_{1}^{0} \\ \bar{g}\bar{s}, \bar{s} \rightarrow q \ell \ell \ell / \nu \nu \bar{k}_{1}^{0} \\ \bar{g}\bar{s}, \bar{s} \rightarrow q \ell \ell \ell / \nu \nu \bar{k}_{1}^{0} \\ \bar{g}\bar{s}, \bar{s} \rightarrow q \ell \ell \ell / \nu \bar{s} \\ \bar{s}, \bar{s} \rightarrow q \ell \ell \ell / \nu \nu \bar{s} \\ \bar{s}, \bar{s} \rightarrow q \ell \ell \ell / \nu \nu \bar{s} \\ \bar{s}, \bar{s} \rightarrow q \ell \ell \ell / \nu \nu \bar{s} \\ \bar{s}, \bar{s} \rightarrow q \ell \ell \ell / \nu \bar{s} \\ \bar{s}, \bar{s} \rightarrow q \ell \ell \ell \bar{s} \\ \bar{s}, \bar{s} \rightarrow q \ell \ell \ell \bar{s} \\ \bar{s}, \bar{s} \rightarrow q \ell \ell \ell \bar{s} \\ \bar{s}, \bar{s} \rightarrow q \ell \ell \ell \bar{s} \\ \bar{s}, \bar{s} \rightarrow q \ell \ell \ell \bar{s} \\ \bar{s}, \bar{s} \rightarrow q \ell \ell \ell \bar{s} \\ \bar{s}, \bar{s} \rightarrow q \ell \ell \ell \bar{s} \\ \bar{s}, \bar{s} \rightarrow q \ell \ell \ell \bar{s} \\ \bar{s}, \bar{s} \rightarrow q \ell \ell \ell \bar{s} \\ \bar{s}, \bar{s} \rightarrow q \ell \ell \bar{s} \\ \bar{s}, \bar{s} \rightarrow q \ell \ell \ell \bar{s} \\ \bar{s}, \bar{s} \rightarrow q \ell \bar{s} \\ \bar{s}, \bar{s} \rightarrow q \ell \ell \bar{s} \\ \bar{s}, \bar{s} \rightarrow q \ell \bar{s} \\ \bar{s} \rightarrow q \ell \ell \bar{s} \\ \bar{s} \rightarrow q \ell \bar{s} \\ $	$\begin{array}{c} 0\text{-}3 \ e, \mu/1\text{-}2 \ \tau \\ 0 \\ \text{mono-jet} \\ 0 \\ 3 \ e, \mu \\ 2 \ e, \mu \ (\text{SS}) \\ 1\text{-}2 \ \tau + 0\text{-}1 \\ 2 \ \gamma \\ \gamma \\ 2 \ e, \mu \ (\text{Z}) \\ 0 \end{array}$	2-10 jets/3 / 2-6 jets 1-3 jets 2-6 jets 2-6 jets 4 jets 0-3 jets ℓ 0-2 jets 1 b 2 jets 2 jets mono-jet	b Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 13.3 3.2 13.3 13.3 13.2 13.2 3.2 3.2 20.3 13.3 20.3 20.3	\$\bar{q}\$ \$\bar{q}\$ \$\bar{q}\$ \$\bar{q}\$ \$\bar{q}\$ \$\bar{608} \text{ GeV}\$ \$\bar{k}\$ \$\bar{k}\$	1.85 TeV .35 TeV 1.86 TeV 1.83 TeV 1.7 TeV 1.6 TeV 2.0 TeV 1.65 TeV .37 TeV 1.8 TeV	$\begin{split} & m(\tilde{q}) = m(\tilde{g}) \\ & n(\tilde{t}^0_1) < 200 \; GeV, \; m(1^{11} \; \mathrm{gen.}\; \tilde{q}) = m(2^{2nd} \; \mathrm{gen.}\; \tilde{q}) \\ & m(\tilde{q}^0_1) = O \; GeV \\ & m(\tilde{t}^0_1) = O \; GeV \\ & m(\tilde{t}^0_1) < O \; GeV \\ & m(\tilde{t}^0_1) < O \; GeV \\ & m(\tilde{t}^0_1) < SO \; O \; GeV \\ & rr(NLSP) < 0.1 \; mm \\ & m(\tilde{t}^0_1) < SSO \; GeV, \; cr(NLSP) < 0.1 \; mm, \; \mu < O \\ & m(\tilde{t}^0_1) < SSO \; GeV, \; cr(NLSP) < 0.1 \; mm, \; \mu > O \\ & m(NLSP) < ASO \; GeV \\ & m(\tilde{C^0_1}) > LSS \; O \; GeV, \; cr(NLSP) < 0.1 \; mm, \; \mu > O \\ & m(NLSP) < ASO \; GeV \\ & m(\tilde{C^0_1}) > LS \; \times 10^{-4} \; eV, \; m(\tilde{g)} = m(\tilde{q}) = 1.5 \; TeV \end{split}$	5625 16-078 78 78 78 78 78 78 78 78 78 78 78 78 7
3 rd gen ẽ med.	$ \begin{array}{l} \tilde{g}\tilde{g}, \; \tilde{g} \rightarrow b \tilde{b} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \; \tilde{g} \rightarrow t \tilde{t} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \; \tilde{g} \rightarrow b t \tilde{\chi}_{1}^{+} \end{array} $	0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	3 b 3 b 3 b	Yes Yes Yes	14.8 14.8 20.1	<u>\$</u> <u>\$</u> \$ 1	1.89 TeV 1.89 TeV .37 TeV	$\begin{split} &m(\tilde{k}_{1}^{0}){=}0GeV \\ &m(\tilde{k}_{1}^{0}){=}0GeV \\ &m(\tilde{k}_{1}^{0}){<}300GeV \end{split}$	d e -2016-052/ -2016-07/ 600
3 rd gen. squarks direct production	$ \begin{array}{l} b_1 \bar{b}_1 , \bar{b}_1 \rightarrow b \bar{x}_1^0 \\ \bar{b}_1 \bar{b}_1 , \bar{b}_1 \rightarrow b \bar{x}_1^0 \\ \bar{t}_1 \bar{t}_1 , \bar{t}_1 \rightarrow c \bar{t}_1^0 \\ \bar{t}_1 \bar{t}_1 (natural GMSB) \\ \bar{t}_2 \bar{t}_2 , \bar{t}_2 \rightarrow \bar{t}_1 + Z \\ \bar{t}_2 \bar{t}_2 , \bar{t}_2 - \bar{t}_1 + h \end{array} $	$\begin{array}{c} 0 \\ 2 \ e, \mu \ (\text{SS}) \\ 0.2 \ e, \mu \\ 0.2 \ e, \mu \\ 0 \\ 2 \ e, \mu \ (Z) \\ 3 \ e, \mu \ (Z) \\ 1 \ e, \mu \end{array}$	2 b 1 b 1-2 b 0-2 jets/1-2 mono-jet 1 b 1 b 6 jets + 2 b	Yes Yes 4. Yes 4. Yes Yes Yes Yes Yes	3.2 13.2 7/13.3 7/13.3 3.2 20.3 13.3 20.3	b1 840 GeV b1 325-685 GeV A17-170 GeV 200-720 GeV 7 90-198 GeV 205-850 GeV 71 90-323 GeV 205-850 GeV 71 90-323 GeV 205-850 GeV 72 290-700 GeV 290-700 GeV 72 320-620 GeV 320-620 GeV		$\begin{split} m(\tilde{t}_{1}^{0}) &< 100 \mbox{ GeV } \\ m(\tilde{t}_{1}^{0}) &< 100 \mbox{ GeV } \\ m(\tilde{t}_{1}^{0}) &= 2m(\tilde{t}_{1}^{0}) \\ m(\tilde{t}_{1}^{0}) &= 2m(\tilde{t}_{1}^{0}) \\ m(\tilde{t}_{1}^{0}) &= 50 \mbox{ GeV } \end{split}$	1209 02. ATLAS-CC 1506. 16. ATLAS-CC 1604.07773 1403.5222 LAS-CCNF-2016-6- 1506.08616
EW direct	$ \begin{array}{l} \tilde{l}_{1,\mathbf{R}}\tilde{l}_{1,\mathbf{R}},\tilde{\ell}\rightarrow \tilde{\ell}\tilde{x}_{1}^{0} \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{1}^{*},\tilde{\chi}_{1}^{*}\rightarrow\tilde{\ell}\nu(\ell\tilde{\nu}) \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{1}^{*},\tilde{\chi}_{1}^{*}\rightarrow\tau\tilde{\nu}(\tilde{\tau}) \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{2}^{*}\rightarrow\tilde{W}_{1}^{*}\tilde{\nu}_{n}^{*}(\tilde{\ell}\tilde{\nu}),\tilde{\nu}\tilde{\ell}_{n}^{*}(\tilde{\ell}\tilde{\nu}) \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{2}^{*}\rightarrow\tilde{W}_{1}^{*}\tilde{\nu}_{n}^{*}(\tilde{\nu}),\tilde{\nu}\tilde{\ell}_{n}^{*}\tilde{\ell}(\tilde{\nu}\nu) \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{2}^{*}\rightarrow\tilde{W}_{1}^{*}\tilde{\nu}_{n}^{*},h^{*},h\rightarrow b\tilde{b}/WW/\tau\pi \\ \tilde{\chi}_{2}^{*}\tilde{\chi}_{2}^{*}\tilde{\chi}_{2}^{*}\rightarrow\tilde{\chi}_{2}^{*}d \\ \tilde{G}GM (vino NLSP) weak prod. \\ GGM (bino NLSP) weak prod. \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ \tau \\ 3 \ e, \mu \\ 2 \ 3 \ e, \mu \\ 2 \ 3 \ e, \mu \\ 4 \ e, \mu \\ 1 \ e, \mu + \gamma \\ 2 \ \gamma \end{array}$	0 0 0-2 jets 0-2 <i>b</i> 0 	Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 13.3 14.8 13.3 20.3 20.3 20.3 20.3 20.3 20.3		$m(\bar{x}_1^0)=0$ $m(\bar{x}_1^+)=m$ $m(\bar{x}_2^0)=m$	$\begin{split} m(\tilde{\xi}_{1}^{0}) &= 0 \text{ GeV } \\ \text{GeV, } m(\tilde{\xi}_{1}^{0}) &= 0 \text{ GeV, } m(\tilde{\xi}_{1}^{0}) + m(\tilde{\xi}_{1}^{0})) \\ m(\tilde{\xi}_{1}^{0}) &= 0 \text{ GeV, } m(\tilde{\xi}_{1}^{0}) &= 0.5 (m(\tilde{\xi}_{1}^{0})) \\ (\tilde{\xi}_{1}^{0}), m(\tilde{\xi}_{1}^{0}) &= 0.(\tilde{\ell}, \tilde{\nu}) \text{ Geod} \\ m(\tilde{\xi}_{1}^{0}) &= m(\tilde{\xi}_{1}^{0}), m(\tilde{\xi}_{1}^{0}) = 0. \tilde{\ell} \text{ deod} \\ m(\tilde{\xi}_{1}^{0}) &= m(\tilde{\xi}_{1}^{0}) = 0. \tilde{\ell} \text{ deod} \\ m(\tilde{\xi}_{1}^{0}) &= m(\tilde{\ell}, \tilde{\nu}) = 0.5 (m(\tilde{\xi}_{2}^{0})) \\ er<1 \text{ mm} \\ er<1 \text{ mm} \end{split}$	1.5294 F-2016-096 1-2016-096 402.7029 110 0686 05493 7.05493 ↓ 1.0
Long-lived particles	$\begin{array}{l} \mbox{Direct} \ \tilde{X}_1^+ \tilde{X}_1^- \ \mbox{prod}, \ \mbox{long-lived} \ \tilde{X}\\ \mbox{Direct} \ \ \tilde{X}_1^+ \tilde{X}_1^- \ \mbox{prod}, \ \mbox{long-lived} \ \tilde{X}\\ \mbox{Stable}, \ \ \mbox{stable}, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$ \begin{array}{c} \overset{\scriptscriptstyle \pm}{\underset{\scriptstyle I}} & \text{Disapp. trk} \\ & \text{dE/dx trk} \\ & 0 \\ & \text{trk} \\ & \text{dE/dx trk} \\ e_{*}\mu) & 1{\text{-}}2\mu \\ & 2\gamma \\ & \text{displ. }ee/e\mu/j \\ & \text{displ. vtx + je} \end{array} $	x 1 jet - 1-5 jets - - - μμ - ets -	Yes Yes - - Yes - Yes	20.3 18.4 27.9 3.2 3.2 19.1 20.3 20.3 20.3	X [±] 270 GeV X [±] 495 GeV \$\vec{v}\$ 850 GeV \$\vec{v}\$ 850 GeV \$\vec{v}\$ 850 GeV \$\vec{v}\$ 9 \$\vec{v}\$ 9 \$\vec{v}\$ 9 \$\vec{v}\$ 9 \$\vec{v}\$ 9 \$\vec{v}\$ 9 \$\vec{v}\$ 1.0 TeV \$\vec{v}\$ 1.0 TeV	1.58 TeV 1.57 TeV	$\begin{split} &m(\tilde{k}_{1}^{2})\!-\!m(\tilde{k}_{1}^{0})\!-\!160\;MeV,\;\tau(\tilde{k}_{1}^{1})\!=\!0.2\;ns\\ &m(\tilde{k}_{1}^{2})\!-\!160\;MeV,\;\tau(\tilde{k}_{1}^{1})\!<\!15\;ns\\ &m(\tilde{k}_{1}^{0})\!=\!100\;GeV,\;10\mus\!<\!\tau(\tilde{g})\!<\!1000\;s\\ &m(\tilde{k}_{1}^{0})\!=\!100\;GeV,\;7\!>\!10\;ns\\ &10\!<\!tan\beta\!<\!\!50\\ &10\!<\!tan\beta\!<\!50\\ &1\!<\!\tau(\tilde{k}_{1}^{0})\!$	$ \begin{array}{c} 1310.3675 \\ 1506.05332 \\ 1310.6584 \\ 1606.05129 \\ 1604.04520 \\ 1411.6795 \\ 1409.5542 \\ 1504.05162 \\ 1504.05162 \end{array} $
RPV	$ \begin{array}{l} LFV pp \rightarrow \overline{\mathfrak{r}}_r + X, \overline{\mathfrak{r}}_r \rightarrow e\mu/e\tau/\mu\tau\\ Bilinear \;RPV \;CMSSM\\ \overline{\lambda}_1^+ \overline{\lambda}_1^-, \overline{\lambda}_1^+ \rightarrow W\overline{\lambda}_1^0, \overline{\lambda}_1^0 \rightarrow eev, e\muv, \mu\\ \overline{\lambda}_1^+ \overline{\lambda}_1^-, \overline{\lambda}_1^+ \rightarrow W\overline{\lambda}_1^+, \overline{\lambda}_1^0 \rightarrow trrv_e, etv, \mu\\ \overline{g}, \overline{g}, \overline{g} \rightarrow qqq\\ \overline{g}, \overline{g}, \overline{g} \rightarrow qqq\\ \overline{g}, \overline{g}, \overline{g} \rightarrow t\overline{\lambda}_1^-, \overline{\lambda}_1^0 \rightarrow qqq\\ \overline{g}, \overline{g}, \overline{g} \rightarrow t\overline{\lambda}_1^-, \overline{\lambda}_1^0 \rightarrow bs\\ \overline{i}, \overline{i}_1, \overline{i}, \overline{i} \rightarrow bs\\ \overline{i}, \overline{i}_1, \overline{i}, -b\deltat \end{array} $	$\begin{array}{c} e\mu, e\tau, \mu\tau \\ 2 \ e, \mu \ (SS) \\ \mu\mu\gamma & 4 \ e, \mu \\ & 3 \ e, \mu + \tau \\ & 0 \ & 4 \\ & 1 \ e, \mu + \tau \\ & 1 \ e, \mu \\ & 1 \ e, \mu \\ & 0 \\ & 2 \ e, \mu \end{array}$	- 0-3 b - - 4-5 large- <i>R</i> je 8-10 jets/0-4 8-10 jets/0-4 2 jets + 2 b 2 b	Yes Yes Yes ets - ets - b - b -	3.2 20.3 13.3 20.3 14.8 14.8 14.8 14.8 14.8 14.8 15.4 20.3	\$\vec{v}\$; \$\	1.9 TeV 1.45 TeV eV / 1.55 TeV 1.75 TeV 1.4 TeV	$ \begin{split} \lambda_{311}' = 0.11, \lambda_{132/133/233} = 0.07 \\ m(\bar{q}) = m(\bar{q}), c_{TE,F} < 1 \text{ mm} \\ m(\bar{k}_1^{T}) > 400 \text{GeV}, \lambda_{122} \neq 0 (k = 1, 2) \\ m(\bar{k}_1^{T}) > 2.8 m(\bar{k}_1^{T}) > 4.5 m(\bar{k}_1^{T}) > 4$	1607.08079 1404.2500 ATLAS-CONF-2016-075 1405.5086 ATLAS-CONF-2016-057 ATLAS-CONF-2016-057 ATLAS-CONF-2016-094 ATLAS-CONF-2016-094 ATLAS-CONF-2016-094 ATLAS-CONF-2016-094 ATLAS-CONF-2015-015
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 <i>c</i>	Yes	20.3	č 510 GeV		m(𝑢̃ ⁰ ₁)<200 GeV	1501.01325
	*Only a selection of the states or phenomena	e available n	nass limits	on nev	v 1) ⁻¹ 1		Mass scale [TeV]	

states or phenomena is shown.

Results presented in this seminar

① Inclusive searches for gluinos and squarks:

- 1-l + 2-9 jets + E_{T.miss} [<u>arXiv:1708.08232</u>]
- **②** Searches for direct production of 3rd generation squarks:
 - 0-*l* + b-jets + E_{T,miss} [arXiv:709.04183]
- **③** Searches for electro-weak production of SUSY particles:
 - 2/3-*l* + E_{T,miss} [<u>ATLAS-CONF-2017-039</u>]
- **④** Searches for long-lived particles:
 - Disappearing track signature (search for long-lived charginos) [ATLAS-CONF-2017-017]
- All results available on the ATLAS SUSY public webpage:
 - <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults</u> (contains 18 results with the full 2015+2016 dataset)

03/11/17

Part 1 of 4

Inclusive searches for gluinos and squarks

Why Inclusive Searches for Gluinos / Squarks?

$1-\ell$ + jets + E_T^{miss} Search: Signal Regions

- Target final state: 1 lepton (soft/hard) + jets + E_T^{miss}
- Two analysis streams

(1) "2-6 jet stream": Targeting simplified models with gluino/squark production and 1-step decay via chargino to LSP

Two model planes to probe optimal slices of parameter space with $x = \frac{1}{2}$ or variable x

SR	2J	4J high-x	4J low-x	6J				
N _ℓ	= 1	= 1	= 1	= 1				
p_{T}^{ℓ} [GeV]	> 7(6) for $e(\mu)$ and < min(5 \cdot N _{jet} , 35)	> 35	> 35	> 35				
N _{jet}	≥ 2	4–5	4–5	≥ 6				
$E_{\rm T}^{\rm miss}$ [GeV]	> 430	> 300	> 250	> 350				
$m_{\rm T}$ [GeV]	> 100	> 450	150-450	> 175				
Aplanarity	-	> 0.01	> 0.05	> 0.06				
$E_{\rm T}^{\rm miss}/m_{\rm eff}$	> 0.25	> 0.25	-	-				
$N_{b-\text{jet}}$ (excl)	$= 0$ for <i>b</i> -veto, ≥ 1 for <i>b</i> -tag							
m [GeV] (evcl)	3 bins ∈ [700,1900]	$2 \text{ bins} \in [1000, 2000]$	2 bins ∈ [1300,2000]	3 bins ∈ [700,2300]				
m _{eff} [Uev] (exci)	+ [> 1900]	+ [> 2000]	+ [> 2000]	+ [> 2300]				
m = [GeV] (disc)	> 1100	> 1500	> 1650(1300)	> 2300(1233)				
m _{eff} [Uev] (uise)	> 1100	> 1500	for gluino (squark)	for gluino (squark)				

- **4 exclusive signal regions** targeting different mass splittings
- Includes **soft-lepton** 2J region to target compressed scenarios
- For discovery: Tight cuts on m_{eff}

•

For exclusion: Further binning in m_{eff} and N_{b-jet} to (28 regions in total) to maximise sensitivity to a wide range of models

03/11/17

$1-\ell$ + jets + E_T^{miss} Search: Signal Regions

- Target final state: 1 lepton (soft/hard) + jets + E_T^{miss}
- Two analysis streams
 - (2) "9 jet stream": Targeting models with higher jet multiplicities:

p	\tilde{g} $\tilde{\chi}_2^0$ $\tilde{\chi}_1^0$	"0-lepton + multi-jets pMSSM slice"
	\tilde{g} \tilde{g} $\tilde{\chi}_{1}^{\pm}$ $\tilde{\chi}_{1}^{0}$ $\tilde{\chi}_{1}^{0}$ W e	xample decay chain

SR	9J
N_ℓ	= 1
p_{T}^{ℓ} [GeV]	> 35
N _{jet}	≥ 9
$E_{\rm T}^{\rm miss}$ [GeV]	> 200
$m_{\rm T}$ [GeV]	> 175
Aplanarity	> 0.07
$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{H_{\mathrm{T}}} [\mathrm{GeV}^{1/2}]$	≥ 8
$m_{\rm eff}$ [GeV] (excl)	[1000, 1500], [>1500]
$m_{\rm eff}$ [GeV] (disc)	> 1500

- Dedicated 9-jet signal region
- For discovery: Tight cut on m_{eff}
- For exclusion: Binning in $\rm m_{eff}$ to maximise sensitivity

03/11/17

1- ℓ + jets + E_T^{miss} Search: Backgrounds

2-6 jet stream:

- Dominant top & W+jets backgrounds:
 - Dedicated control regions in each m_{eff}
 bin + extrapolation to validation and signal regions
- Other Backgrounds: Z+jets, tt+V, di-boson
 - From simulation

9 jet stream:

- Dominant top & W+jets background:
 - "ABCD" method based on invariance of transverse mass with jet multiplicity (~valid for tight cuts on m_{eff})
 - Simulation-based closure parameter to correct for residual correlations
 - Validation using ABC'D' and A'BCD" setups
- Other Backgrounds: Z+jets, tt+V, di-boson
 - From simulation

$1-\ell$ + jets + E_T^{miss} Search: Results

$1-\ell$ + jets + E_T^{miss} Search: Interpretation

Full statistical combination of 2-6 jet stream exclusion regions

03/11/17

Moritz Backes

Putting it into context + other results

03/11/17

Part 2 of 4

Searches for 3rd Generation Squarks

Why 3rd Generation Squark Searches?

03/11/17

Stop 0-*l* Search: Overview

Stop 0-*l* Search: Overview

Stop 0-*l* Search: Overview

p

p

Signal Region E

- Targets **gluino-mediated** stop production with highly boosted top guarks
- Δm (gluino, stop) large, Δm (stop, LSP)= 5 GeV .
- Requirements on 1st/2nd leading **large-R jet mass**
- Tight $E_{T.miss}$, H_T and $E_{T.miss}/\sqrt{H_T}$ selections

Background Estimation

- Dominant backgrounds:
 - Z(→vv) + heavy flavour jets [2ℓ CR]
 - tt [1ℓ CR], tt+Z(→vv) [1ℓ+1γ CR]
- Subdominant backgrounds:
 - W + heavy flavour jets [1/ CR],
 - single-top [1/ CR]
 - Multi-jets [Multi-jets CR]
- Semi data-driven background estimation with simulated based extrapolation to VRs & SRs
 - Lepton in 1 ℓ CRs \rightarrow jet
 - Leptons in $2\ell CR \rightarrow p_{Tmiss}$
 - Photon $\rightarrow p_{Tmiss}$

03/11/17

 soft

Stop O-*l* Search: Results

03/11/17

Moritz Backes

Stop 0-*l* Search: Interpretation

03/11/17

Putting it into context

Putting it into context

03/11/17

Moritz Backes

Part 3 of 4

Searches for EW Production of SUSY particles

Why Electro-weak SUSY Searches?

NLO + NLL, pp, $\sqrt{s} = 13$ TeV

- Light electroweak particles well motivated in the context of naturalness (Higgsinos!)
- Searches are challenging due to low cross-sections (3-5 orders of magnitude below gluino pair production!)
- But typical low-background multilepton signatures make these scenarios accessible
- → Lack of evidence for coloured SUSY particles and large amounts of data collected @ 13 TeV are strong motivation to search for EW SUSY now!

Moritz Backes
Overview: EW 2/3-l + E_{T.miss} Search

Search for direct electro-weak production of SUSY particles in 2/3 lepton + E_{T,miss} final states with 3 dedicated analysis streams

 2ℓ + 0 jets stream -

- Targets models with sleptons
- 2 categories of selections:
 - SFOS (e⁺e⁻ / μ⁺μ⁻): 13
 SRs binned in m_{T2}
 and m_{ℓℓ}
 - DFOS (e[±]µ[∓]): 4 SRs
 binned in m_{T2}

2ℓ + 2 jets stream

- Targets W/Z-mediated decay
- Dedicated SFOS (e⁺e⁻/ $\mu^+\mu^-$) SRs for large / medium and small mass splittings Δm ($\chi^0_2/\chi^{\pm}_1,\chi^0_1$)
- Small ∆m regions exploit ISR vs. W+Z+invisible recoil

3ℓ stream

- At least one SFOS pair (e⁺e⁻ / µ⁺µ⁻)
 - W/Z-mediated decay:
 Binned signal region in Z mass region
- Slepton-mediated decay:

 $\tilde{\chi}_1^0$

 $\tilde{\chi}_1^{\pm}$

 $\tilde{\chi}_2^0$

 Binned signal region in Z mass veto region

 $\tilde{\chi}_2^0$

p

 $\tilde{\chi}_2^0$

Bkgs. & Results: EW 2/3- ℓ + E_{T.miss} Search

2ℓ + 0 jets stream & 2ℓ + 2 jets stream

- Irreducible BGs:
 - Dominated by diboson then tt and Wt
 - MC normalised in dedicated CR for 2l + 0 jets
 - Taken from MC for $2\ell + 2$ jets
- Reducible BGs:
 - Z+jets with fake E_{T,miss} (from MC for 2ℓ + 0 jets / γ+jets events for 2ℓ + 2 jets)
 - Fake / non-prompt leptons (data-driven method)

3ℓ stream

- Irreducible BGs:
 - Dominated by diboson WZ (normalised in dedicated CRs)
- Reducible BGs:
 - Z+jets, tt, Wt, WW with ≥1 fake / non-prompt lepton region (data-driven method)

 \rightarrow No significant deviations from the SM expectation

03/11/17

Backgrounds: EW 2/3-l + E_{T.miss} Search

03/11/17

Putting it into context

03/11/17

Moritz Backes

Searches for Long-lived Particles

Disappearing Track Search: Overview

- If lightest chargino & neutralino are almost pure Wino (e.g. in **A**nomaly **M**ediated **S**USY **B**reaking)
 - Mass degeneracy: $\Delta m(\chi_1^{\pm}, \chi_1^{0})$ ~ 160 MeV
 - Chargino long-lived: τ ~ 0.2 ns
 - Sizable decay length: ct ~ 6 cm
- Chargino decays into ultra-soft pion and neutralino
- Experimental signature to discriminate against SM backgrounds:
 - Disappearing track
 - Large E_{T,miss} from LSP
- Run-1 search was sensitive to disappearing tracks with decay lengths starting from 30 cm ~ 1 ns
- → New insertable pixel B-layer (IBL) installed during long shutdown opens up window to shorter life-times (ct ~ 12 cm) for the very first time!

03/11/17

Disappearing Track Search: Overview

- pMSSM reinterpretation of 8 TeV ATLAS SUSY searches [JHEP 10 (2015) 134] showed that Run-1 analysis excluded ~30% of Wino-like models
- ~70% of the Wino-LSP models included in the pMSSM scan have lifetimes of 0.15-0.25 ns
- → A very generic lifetime range in MSSM!
- → Strong motivation to search for disappearing track signals with shorter decay lengths!

Analysis	All LSPs	Bino-like	Wino-like	Higgsino-like
0-lepton + 2–6 jets + $E_{\rm T}^{\rm miss}$	32.1%	35.8%	29.7%	33.5%
0-lepton + 7–10 jets + $E_{\rm T}^{\rm miss}$	7.8%	5.5%	7.6%	8.0%
$0/1$ -lepton + $3b$ -jets + $E_{\rm T}^{\rm miss}$	8.8%	5.4%	7.1%	10.1%
1 -lepton + jets + $E_{\rm T}^{\rm miss}$	8.0%	5.4%	7.5%	8.4%
Monojet	9.9%	16.7%	9.1%	10.1%
SS/3-leptons + jets + $E_{\rm T}^{\rm miss}$	2.4%	1.6%	2.4%	2.5%
$ au(au/\ell) + ext{jets} + E_{ ext{T}}^{ ext{miss}}$	3.0%	1.3%	2.9%	3.1%
0-lepton stop	9.4%	7.8%	8.2%	10.2%
1-lepton stop	6.2%	2.9%	5.4%	6.8%
$2b$ -jets + $E_{\mathrm{T}}^{\mathrm{miss}}$	3.1%	3.3%	2.3%	3.6%
2-leptons stop	0.8%	1.1%	0.8%	0.7%
Monojet stop	3.5%	11.3%	2.8%	3.6%
Stop with Z boson	0.4%	1.0%	0.4%	0.5%
$tb + E_{\rm T}^{\rm miss}$, stop	4.2%	1.9%	3.1%	5.0%
ℓh , electric Moot power	f ul 000	rob	0	0
			0.7%	1.6%
$2-\tau$, electroweal for Wino	-LSPs !	5%	0.2%	0.2%
3-leptons, electro	0.8%	8%	1.1%	0.6%
4-leptons	0.5%	1.170	0.6%	0.5%
Disappearing Track	11.4%	0.4%	29.9%	0.1%
Long-lived particle	0.1%	0.1%	0.0%	0.1%
$H/A \rightarrow \tau^+ \tau^-$	1.8%	2.2%	0.9%	2.4%
Total	40.9%	40.2%	45.4%	38.1%

03/11/17

Disappearing Track Search: Overview

Electroweak production channel

Gluino-mediated production channel

ISR jet + **E**_{T,miss} + **disappearing track**

Multi-jet + E_{T,miss} + disappearing track

Disappearing Track Search: Backgrounds

03/11/17

Disappearing Track Search: Backgrounds

03/11/17

Disappearing Track Search: Results

- **No significant deviations** from the Standard Model expectation
- Limits set in EW and strong production channels:
 - EW Production: Significant improvement w.r.t. Run-1 at lower lifetimes
 - Strong production: Reaching to 1.4 (1.1) TeV in chargino mass for lifetimes of 1.0 (0.2) ns

Putting it into context

Moritz Backes

Summary & Outlook

- Thanks to the fantastic performance of the LHC ATLAS has carried out an extensive search programme for SUSY leading to currently 20 public results using the full 2015 + 2016 dataset of ~36 fb⁻¹ at 13 TeV
- No significant deviations from the SM
- Significant boost in sensitivity excluding gluino masses in some scenarios beyond 2 TeV!
- More interesting results to come in particular for electroweak searches.
- An additional ~43 fb⁻¹ of data from the 2017 campaign are ready to be analysed.
- → Stay **fine-tuned** for further news!

The ATLAS Experiment

44m

ATLAS Inner Detector (ID)

Consists of three subsystems:

- Pixel detector
- Silicon Microstrip Detector (SCT)
- Transition Radiation Tracker (TRT)
- Coverage up to $|\eta| < 2.5$
- Immersed in 2T solenoid magnetic field

- → Vertex reconstruction
- → Particle ID (TRT)

03/11/17

ATLAS Calorimeter System

- Electromagnetic and Hadronic Calorimeters
- Coverage up to |η| < 4.9
- → Electrons and photons deposit their energy in form of electromagnetic showers in the electromagnetic calorimeter.
- → Hadrons deposit their energy in form of hadronic showers in the hadronic calorimeter (reconstructed as "jets")

E_{T,miss} is reconstructed.

ATLAS Muon Spectrometer (MS)

- Precision tracking and trigger chambers
- Coverage up to $|\eta| < 2.7$
- Immersed in toroid magnetic field
- → Muons leave a track in the muon spectrometer

RPV 1 Search – Overview

- Search for new physics in lepton + multi-jets (up to ≥12 jets) final state
- Defining feature: No m_T or E_{T,miss} requirements
- → Final state has been actively asked for by the theory community, e.g. [arXiv:1310.5758]
- RPV SUSY simplified models with gluino and stop pair production used as benchmark:

1-lepton + multi-jets selections

- 1 e / μ > 30 GeV with **tight ID and isolation** requirements (to counter fakes)
- 3 analysis streams with jet $p_T > 40/60/80$ GeV
- Events in each stream categorized:
 - N_{jets}: 5-7 jets used to *build background model* only, 8 ≥12 jets used as signal regions
 - ② N_{b-tags}: 0,1,2,3,≥4

RPV 1 Search: Backgrounds

- Dominant backgrounds: $t\bar{t}$ +jets @ high N_{b-jet} and V+jets @ low N_{b-jet} \rightarrow data-driven estimate
- Basic concept: Parameterised extrapolation of N_{b-tag} spectrum from medium to high N_{jet}

- → Simultaneous fit of shape & normalisation in all considered bins:
 - Discovery setup: Only N_{b-tag} ==0, ≥3 bins considered as SRs. Orthogonal bins with small signal contamination used to constrain background model.
 - Exclusion setup: All N_{jet} / N_{b-tag} bins used to constrain model.
- Other backgrounds: multi-jets (data-driven matrix-method estimate), diboson / single-top / tt+X (from simulation mostly < 10%)

RPV 1 Search: Validation

- Scaling of N_{iets} normalisation validated in data and simulation:
 - ✓ tī di-lepton selection (data validation)
 - \checkmark tt di-lepton selection (MC closure)
 - ✓ tt̄+jets + lepton (MC closure)

- \checkmark γ +jets control selection (data validation)
- ✓ multi-jets selection (data validation)
- ✓ W+jets / Z+jets (MC closure)

03/11/17

Moritz Backes

RPV 1 Search: Results

03/11/17

Moritz Backes

RPV 1 Search: Results

03/11/17

RPV 1 Search: Interpretation

03/11/17

Moritz Backes

Displaced Vertex Search - Overview

- Search for long-lived massive particles in the lifetime range $O(10^{-2}) O(10)$ ns
- Split-SUSY inspired simplified model as benchmark

 Long-lived gluinos form bound colour singlet states with SM particles (R-hadron) → decay in the inner tracker volume

- Experimental signature: Displaced vertex (R
 ~ 1-100 mm) with high track multiplicity (≥5)
 and high mass (>10 GeV) + E_{T,miss}
- Use of specialised large radius track reconstruction with extended d₀/z₀ windows to reconstruct displaced vertices within R,|z| < 30 cm

03/11/17

Displaced Vertex Search - Backgrounds

- Hadronic interactions with detector material → Produces displaced vertices:
 - Background significantly reduced by removing material-rich regions from fiducial volume (maps based on minimum bias data) → Discards 42% of detector volume
 - Residual contribution estimated with exponential fit at low m_{DV} + extrapolation to high m_{DV}
- Close-by short-lived SM particle decays → Merge into common vertex thus passing N_{trk} and m_{DV} cuts
 - Estimated by merging vertices from distinct events randomly
- Accidental crossing of low mass vertices and tracks
 → Used in vertex reconstruction thus passing N_{trk} and
 m_{DV} requirements
 - Estimate by adding pseudo-track to vertices in a control region
- → Several dedicated signal-depleted validation regions used for cross-checks

03/11/17

Displaced Vertex Search - Results

Obs limit (m₂=1.4 TeV)

Obs limit (m_=2.0 TeV)

Exp limit $(\pm 1, 2\sigma_{exp})$

Exp limit $(\pm 1, 2\sigma_{exp})$

 $\sigma_{NLO+NLL}(pp \rightarrow \tilde{g}\tilde{g}), m_{2}=1.4 \text{ TeV}$

ATLAS

10 - Vs=13 TeV, L=32.8 fb⁻¹

All limits at 95% CL

 $\widetilde{g} \rightarrow qq \widetilde{\chi}^{0}, m_{\omega} = 100 \text{ GeV}$

- No event is observed in the SR: Consistent • with the background expectation of 0.2 ± 0.2 events
- Exclude long-lived gluinos up to 2.3 TeV with • lifetimes of ~ $O(10^{-2})$ - O(10) ns

Inclusive 0-*l* Search: Overview

03/11/17

Inclusive O-*l* Search: Backgrounds

• Dominant backgrounds estimated in 4 CRs for each SR → extrapolation to VRs/SRs with transfer factors (TFs)

03/11/17

Moritz Backes

Inclusive O-*l* Search: Results

- Background estimates validated in large amount of validations regions for the major background processes
- No significant deviations from the Standard Model expectation in both streams

Inclusive O-*l* Search: Interpretations

03/11/17

Moritz Backes

Inclusive O-*l* Search: Interpretations

03/11/17

Moritz Backes

Multi b-jet Search: Overview

- Defining feature: ≥ 3 b-jets + 0/1 lepton + E_{T,miss} final state
- Main benchmarks are gluino-mediated stop/sbottom production
- ① 10 Inclusive signal regions optimised for discovery:
 - Selection: ≥ 3-8 jets using N_{b-tag}, m_{eff}, m_T, E_{T,miss}, Σm_{large-R jets} to target compressed, intermediate, & large mass splittings
- ② Binned orthogonal signal regions optimised for exclusion:
 - Selection: Ranging from low to high (m_{eff} & N_{jet}) to cover broad range of mass spectra
 - Combined fit over all bins to enhance exclusion power

Multi b-jet Search: Backgrounds

- Dominant background tt+jets estimated with semi datadriven approach in dedicated 1-lepton control regions + extrapolation to validation and signal regions
- Other backgrounds (tt+X, Z+jets, single-top, di-boson)
 from simulation
- Multi-jets background negligible
- → No evidence of significant background mis-modeling in the validation regions

Multi b-jet Search: Results

2100 95 95 GeV Data ATLAS Preliminary ATLAS Preliminary Generally good 8 Total background 💥 Total background √s=13 TeV, 36.1 fb⁻¹ √s=13 TeV. 36.1 fb⁻¹ Events / 100 (100 7 Gbb-D I0L-HI agreement between Single top Single top Cut-and-count analysis Multi-bin analysis tī + X tī + X Events / 6 data and prediction in Z+jets Z+iets W+iets W+jets 5F discovery and Diboson Diboson Multiiet Multijets exclusion signal 40 Gtt: $m(\tilde{g}), m(\tilde{\chi}_{+}^{0}) = 1900, 1$ Gbb: $m(\tilde{g}), m(\tilde{\chi}^{0}) = 1200, 1000^{-1}$ Gbb: $m(\tilde{g}), m(\tilde{\chi}^{0}) = 1400, 1200$ Gtt: m(\tilde{g}), m($\tilde{\chi}_{..}^{0}$) = 1900, 600 regions 20 Small deviation in 0-200 300 400 500 600 700 800 900 100 300 400 500 600 700 800 900 1000 200 E^{miss}_T [GeV] E^{miss} [GeV] lepton high-mass signal region ~ 2σ Events 10³ Events ATLAS Preliminary ATLAS Preliminary Total background Data Total background Data 10^{3} Sinale top l tt Single top tt √s=13 TeV, 36.1 fb⁻¹ √s=13 TeV. 36.1 fb⁻¹ tt + X W+iets tt + X W+jets Z+jets Diboson Z+jets Diboson Cut-and-count analysis Multi-bin analysis Multijet 10 ☐ Multijet 10² Exclusion SRs **Discovery SRs** 10 10 10 10 $\mathfrak{g}_{\mathrm{tot}}$ ъ - n_{bred}) / o n_{pred}) (n obs SR-Gtt-1L-B SR-Gtt-OL-A SR-Gbb-A SR-Gbb-D SR-Gtt-1L-A SR-Gtt-1L-C SR-Gtt-OL-B SR-Gtt-OL-C SR-Gbb-B SR-Gbb-C SR-0L-1SR-0L-LL SR-0L-LH SR-0L-1 SR-0L

03/11/17

Multi b-jet Search: Interpretation

- Sensitivity extended in g→bb+x⁰ analysis extended by ~100 GeV w.r.t. 14.8 fb⁻¹ analysis – observed beyond 1.9 TeV
- → Sensitivity extended in g→tt+^x⁰ analysis extended by ~200 GeV w.r.t. 14.8 fb⁻¹ analysis – observed limit beyond 1.95 TeV

03/11/17

Stop Z / Higgs Search: Overview

• Search targeting direct stop production with a **Z or Higgs bosons** in the decay chain:

- Searches for t₂ can improve sensitivity in the regions m_{stop,1} ~ m_t + m_{LSP} → Difficult to access due to similarities with Standard Model tt production
- **2 analysis streams** with **3 signal regions each** to target large, intermediate, small mass differences:
 - 3-ℓ + 1 b-jet stream (targeting $Z \rightarrow \ell^+ \ell^-$ decay): Use of Z boson with p_T^{ℓ} requirements
 - 1/2-ℓ + 4 b-jets stream (targeting h→bb decay): Use of p_T^{bb} and m_{bb} ~ m_h requirements
Stop Z / Higgs Search: Backgrounds

Moritz Backes

• 3-*l* + 1 b-jet stream:

- tt+Z & multi-boson (dominant, dedicated CRs),
- multi-jets (subdominant data-driven matrix-method),
- tt+W/H & rare SM
 processes (minor, from simulation)
- 1/2-*l* + 4 b-jets stream:
 - tt (dominant, dedicated CRs & VRs)
 - single-t & tt+H & rare SM processes (minor, from simulation)

73

03/11/17

Stop Z / Higgs Search: Results

03/11/17

Moritz Backes

Stop Z / Higgs Search: Interpretation

03/11/17

Moritz Backes

s Search: Interpretation

03/11/17

Stop Z /

Moritz Backes

Stop RPV Search

- Motivation: If stops have R-parity violating decays (e.g. stop → jj) no / little sensitivity from E_{T,miss}-based searches → stops could still be light
- Dedicated search for 2 resonances in 4-jet final states targeting decays of stop to a pair of jets

03/11/17

Stop RPV Search - Backgrounds

- Major background: Multi-jets production
- Reduced by further requirements using e.g.:
 - mass asymmetry: $A = |m_1 m_2| / (m_1 + m_2)$
 - Angle θ* of jet pairs with beamline in restframe
- "ABCD-method" in A and |cosθ*| to estimate shape & normalisation in a data-driven way

 tt background dominant in two b-tag region → taken from simulation

03/11/17

Stop RPV Search - Results

 No evidence for resonances in average di-jet mass

 Stop decays to two quarks excluded between
 100 - 410 GeV stop mass

 Stop decays to bs quark pair excluded between 100 - 610 GeV of stop mass

0-*l* + multi-jets: Analysis Strategy

- Target final state: 0-lepton + ≥ 7-11 + low / moderate E_{T,miss}
- Key feature: Use of $E_{T,miss}$ significance (instead of $E_{T,miss}$) as discriminating variable:

$$E_{
m T}^{
m miss}/\sqrt{H_{
m T}}$$
 , where: $H_{
m T}=\sum_{j}p_{{
m T},j}^{
m jet}$

 \rightarrow Analysis also sensitive to scenarios with lower $E_{T,miss}$ (including RPV models)

• Benchmark scenarios for inclusive gluino & squark production (RPC):

0-*l* + multi-jets: Backgrounds & Results

0-*l* + multi-jets: Interpretation

2-l (same-sign) / 3-l Search

- Target final state: 2 same-sign leptons (e[±]e[±], e[±]μ[±], μ[±]μ[±]) or three leptons (e/μ without flavour / charge selection)
- Key feature: SM backgrounds in same-sign final states small while rich SUSY / BSM phenomenology
 - → Can apply much looser kinematic requirements in this channel to discriminate signal from background
 - → Sensitive to large number of models (including e.g. compressed / RPV models)
- Benchmark scenarios for inclusive gluino & squark production (RPC):

2-l (SS) / 3-l: Backgrounds & Results

st 1600 1400

1200

1000

800

600

400

200

0.8

- Data

////// Total SM

Diboson

l tłΨ. tłZ/γ* Rare. ttH. 4t

Charge-flip FNP: matrix method

Fake/non-prompt

ATLAS

√s=13 TeV. 36.1 fb⁻¹

 $\geq I^{\pm}I^{\pm}, \geq 2j, E_{\pm}^{\text{miss}} > 50 \text{ GeV}$

- Dominant background: Rare processes with prompt leptons (mainly tt+V & diboson): Simulation + validation regions
- Fake and non-prompt leptons (FNP): 2 data-driven methods (loose-tight matrix-method & normalisation of FNP contributions in data control regions)
- Electron charge mis-measurement (dominated by hard bremsstrahlung conversion): Charge flip probability estimated from $Z \rightarrow ee$ events
- Results: No significant deviations from the Standard Model:

2-l (SS) / 3-l: Interpretation

Putting it into context

1200

1000

Other 3rd generation results (selection)

sparticle masses

87

Multijet Background Estimation

Multijet background:

- jets misidentified as leptons
- real leptons created as part of a jet (heavy flavour, decay in flight)
- photons converted to electrons
- \rightarrow very small due to high E_{T,miss} selection

Data-driven matrix method:

• Define sample of preselected ("loose") leptons that pass or fail the signal lepton:

$$N_{\text{pass}} = \epsilon_{\text{real}} N_{\text{real}} + \epsilon_{\text{misid.}} N_{\text{misid.}}$$

$$N_{\text{fail}} = (1 - \epsilon_{\text{real}}) N_{\text{real}} + (1 - \epsilon_{\text{misid.}}) N_{\text{misid.}}$$

$$\epsilon_{\text{real}} = \frac{N_{\text{real}}^{\text{pass}}}{N_{\text{real}}^{\text{pass}} + N_{\text{real}}^{\text{fail}}} \epsilon_{\text{misid.}} = \frac{N_{\text{misid.}}^{\text{pass}}}{N_{\text{misid.}}^{\text{pass}} + N_{\text{misid.}}^{\text{fail}}}$$

1) 77

• Solve system of equation:

$$N_{\text{fail}} - (1/\epsilon_{\text{real}} - 1)$$

$$N_{\text{misid.}}^{\text{pass}} = \epsilon_{\text{misid.}} N_{\text{misid.}} = \frac{N_{\text{fail}} - (1/\epsilon_{\text{real}} - 1)N_{\text{pass}}}{1/\epsilon_{\text{misid.}} - 1/\epsilon_{\text{real}}}$$
 Measure from data

- Measurement of ϵ_{real} :
 - Tag & probe with $Z \rightarrow II$ events
 - Separate measurement in bins of $|\eta|$
- Measurement of ϵ_{fake} :
 - Di-jet sample (same-charge, same-flavour, outside Z-mass window) where both jets are misreconstructed as leptons

Recursive Jigsaw Reconstruction

g-2 and smuon masses

Moritz Backes