Precision EW Measurements from ATLAS Extracting sin²θ_{eff}

Introduction Why measure $sin^2\theta_{eff}$? New triple-diff¹ Drell-Yan Cross Sections $d^3\sigma$ Systematic Uncertainties Extraction of $sin^2\theta_{eff}$

Measurement of the Drell-Yan triple differential cross section in pp collisions at $\sqrt{s} = 8$ TeV <u>http://dx.doi.org/10.1007/JHEP12(2017)059</u> <u>arXiv:1710.05167</u>

HepData tables: https://www.hepdata.net/record/ins1630886

ATLAS

UCL Seminar 26th October 2018

Eram Rizvi

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

Status: July 2018

*Only a selection of the available mass limits on new states or phenomena is shown.

†Small-radius (large-radius) jets are denoted by the letter j (J).

Standard Model Total Production Cross Section Measurements Status: July 2018

<u>b</u>

GFitter 2018

With known m_h EW sector of SM is over-constrained

- m_z = 91.1876 GeV
- G_µ = 1.16637 x 10⁻⁵ GeV⁻²
- $\alpha_{\text{QED}}(0) = 1/137.035$
- several others

 $sin^2\theta_W$ is a fundamental SM parameter of the SM Specifies the mixing between EM and weak fields Relates the Z and W couplings g_Z and g_W (and their masses)

At leading order
$$\sin^2 \theta_W = 1 - \frac{g_W^2}{g_Z^2} = 1 - \frac{m_W^2}{m_Z^2}$$

Higher order EW corrections modify this

to an effective mixing angle dependent on fermion flavour *f*

$$\sin^2 \theta_{\text{eff}}^f = \left(1 - \frac{m_W^2}{m_Z^2}\right) \cdot \left(1 + \Delta r\right)$$

 $\begin{array}{l} \text{EW scheme dependent} \\ \text{corrections incorporated into} \\ \Delta r \rightarrow \Delta r(m_{\text{H}} \ , \ m_{\text{top}} \ , \ \ldots) \end{array}$

Electroweak Precision Observables - sin²θ_{eff}

$$\sin^2 \theta_{\text{eff}}^f = \left(1 - \frac{m_W^2}{m_Z^2}\right) \cdot \left(1 + \Delta r\right)$$

EW scheme dependent corrections incorporated into $\Delta r \rightarrow \Delta r(m_H, m_{top}, new physics)$

In context of EFT extension to SM EW oblique parameters S, T, U, Y, W incorporate new BSM dim-6 operators in self-energy terms

 $sin^2\theta_{eff}$ precision ± 50x10^-5 equivalent to ± 25 MeV in m_W

Measurement of one observable can predict the other $m_W \Leftrightarrow sin^2 \theta_W$

$$m_{\rm W}^2 = \frac{\pi \alpha(0)}{\sqrt{2}G_\mu \sin^2 \theta_{\rm W}} \frac{1}{1 - \Delta r}$$

 m_W and $sin^2\theta_{eff}$ allows self-consistency check of SM New physics hidden in the higher order corrections ?? Valuable test in absence of direct BSM signals

Final Precision on sin²θ_{eff}

LEP:	± 29 x10 ⁻⁵
SLD:	± 26 x10 ⁻⁵
CDF+D0:	± 35 x10 ⁻⁵

First LHC results on $sin^2\theta_{eff}$ CMS(7TeV): ± 320 x10⁻⁵ ATLAS(7TeV): ± 120 x10⁻⁵

arXiv:1701.07240

New ATLAS measurement of m_W reaches ±19 MeV precision

ATLAS approaches precision of combined LEP + Tevatron measurement Theory prediction from EW fit has uncertainty ±8 MeV

Physics Reports 427 (2006) 257-454

Drell—Yan Measurement at ATLAS

Eram Rizvi

UCL Seminar – 26th October 2018

Ieptonic decay angle in Collins-Soper frame $\cos \theta^* = \frac{p_{z,\ell\ell}}{m_{\ell\ell}|p_{z,\ell\ell}|} \frac{p_1^+ p_2^- - p_1^- p_2^+}{\sqrt{m_{\ell\ell}^2 + p_{T,\ell\ell}^2}}$

lepton and quark angle or anti-lepton / anti-quark angle

$$\frac{\mathrm{d}^3\sigma}{\mathrm{d}m_{\ell\ell}\mathrm{d}y_{\ell\ell}\mathrm{d}\cos\theta^*} = \frac{\pi\alpha^2}{3m_{\ell\ell}s}\sum_q P_q \left[f_q(x_1,Q^2)f_{\bar{q}}(x_2,Q^2) + (q\leftrightarrow\bar{q}) \right]$$

Triple-differential Z/y* Measurement Motivation

Triple-differential Z/y* Measurement Motivation

Run-I Measurements from ATLAS

 $d^3\sigma$

 $\overline{\mathrm{d}m_{\ell\ell}\mathrm{d}|y_{\ell\ell}|\mathrm{d}\cos\theta^*}$

triple-differential cross sections $d^3\sigma$ =

On-shell DY 8 TeV Neutral current - e & µ channels 46 < m < 200 GeV Extended to high y with FCAL analysis

> <u>arXiv:1710.05167</u> <u>Hepdata</u>

Use d³ to derive ancillary measurements for purely visual purposes **А**_{FB}(m,|y|)

 $\frac{\mathrm{d}\sigma}{\mathrm{d}m_{\ell\ell}}$

 $\frac{\mathrm{d}^2\sigma}{\mathrm{d}m_{\ell\ell}\mathrm{d}|y_{\ell\ell}|}$

Complete 2012 data set analysed

Centre of mass energy $\sqrt{s} = 8 \text{ TeV}$

 $\int \mathcal{L} \, dt = 20.2 \, \text{fb}^{-1}$

7M di-electron events (CC)9M di-muon events (CC)1M forward di-electron events (CF)

ATLAS $Z/\gamma^* d^3\sigma$ Cross Section $\sqrt{s} = 8$ TeV

Muon Selection

- \geq 2 isolated muons
- muon |η| < 2.4
- muon p_T > 20 GeV
- opposite charge

Central Electron Selection

- ≥ 2 good quality "medium" electrons
- electron $|\eta| < 2.4$ excl. 1.37 < $|\eta| < 1.52$
- electron $E_T > 20 \text{ GeV}$

Already good precision achieved for run-II !

Need to ensure phase-space corners are well covered e.g. boosted Zs access high pT lepton efficiencies For run-I lepton pT \sim 200 GeV (For run-II we should reach lepton pT \sim 400 GeV)

Electron Channel

Energy scale typically <1% in peak region dominates error at large $|\cos \theta^*|$ $\rightarrow \sim 3\%$

efficiency error typically <0.5% in peak region larger at at large $\cos \theta^*$ (even at small |y|) $\rightarrow \sim 2-3\%$

Muon Channel

In peak region at $m \sim m_Z$ momentum scale dominates sys error $\rightarrow \sim 0.6\%$ compared to 0.8% stat error

Tracking misalignments <1% upto 2% at small $\cos \theta^*$ or large y

High Rapidity Electron Channel

Energy scale / resolution dominates error at large $|\cos \theta^*| \& y \rightarrow \sim 5\%$ compared to $\sim 3\%$ stat error

Combination of channels constrains correlated systematic uncertainties

Improved precision for combined central channels

Electroweak Backgrounds

ATLAS $Z/\gamma^* d^3\sigma$ Cross Section $\sqrt{s} = 8$ TeV

Central Rapidity Channel

	m∥ =	[46, 66, 80, 91, 102, 116, 150, 20	00] GeV	7 bins
	$ y_{II} = [0.0,$	0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.	.8, 2.0, 2.2, 2.4]	12 bins
	cos θ*=	[-1.0, -0.7, -0.4, 0.0, 0.4, 0.7,	1.0]	6 bins
measure ir check for c	electron + muc consistency of cl	on channels hannels nts	Total bins = x2 channels	504
combine both measurements account for 331 correlated systematic errors improved result for both statistical & systematic precisio		systematic errors atistical & systematic precision	Binning cho • contro • statis • physi	oice optimised for ol experimental bin migrations tical precision cs sensitivity
<u>High I</u>	Rapidity Chanr	<u>nel</u>		

m _{ll} =	[66, 80, 91, 102, 116, 150] GeV	5 bins
y ₁₁ =	[1.2, 1.6, 2.0, 2.4, 2.8, 3.6]	6 bins
cos θ*=	[-1.0, -0.7, -0.4, 0.0, 0.4, 0.7, 1.0]	6 bins
	Total bins =	150

<u>Unfolding</u>

Remove influence of ATLAS detector by unfolding Use ATLAS detector simulation to quantify event resolution migrations and efficiency losses Define the particle-level phase space of the final quoted result

CC fiducial cross section definition

- lepton $p_T > 20 \text{ GeV}$
- lepton |η| < 2.5
- 46 < *m*_{ll} < 200 GeV
- Unfolding to Born level lepton kinematics (dressed level available as a correction factor)

CF fiducial cross section definition

- lepton $p_T > 25$ GeV & lepton $|\eta| < 2.5$
- lepton $p_T > 20 \text{ GeV} \& \text{ lepton } 2.5 < |\eta| < 4.9$
- $66 < m_{ll} < 150 \text{ GeV}$
- Unfolding to Born level lepton kinematics (dressed level available as a correction factor)

Cross sections unfolded using iterative Bayesian unfolding

$$\frac{\mathrm{d}^{3}\sigma}{\mathrm{d}m_{\ell\ell}\,\mathrm{d}|y_{\ell\ell}|\,\mathrm{d}\cos\theta^{*}}\Big|_{l,m,n} = \mathcal{M}_{ijk}^{lmn} \cdot \frac{\mathcal{N}_{ijk}^{\mathrm{data}} - \mathcal{N}_{ijk}^{\mathrm{bkg}}}{\mathcal{L}_{\mathrm{int}}} \frac{1}{\Delta_{m_{\ell\ell}} \cdot 2\Delta_{|y_{\ell\ell}|} \cdot \Delta_{\cos\theta^{*}}}$$

i,j,k = reco bin indices l,m,n = Born bin indices \mathcal{M} = inverted response matrix Δ = bin widths in each variable

Combination

Combine CC electron & muon channel measurements in averaging procedure Minimise difference between two measurements Taking correlated uncertainties into account

> *i* data points *j* systematic error sources

$$\chi_{tot}^{2}(\mathbf{m}, \mathbf{b}) = \sum_{i} \frac{[\mu^{i} - m^{i}(1 - \sum_{j} \gamma_{j}^{i} b_{j})]^{2}}{\delta_{i,stat}^{2} \mu^{i} m^{i}(1 - \sum_{j} \gamma_{j}^{i} b_{j}) + (\delta_{i,unc} m^{i})^{2}} + \sum_{j} b_{j}^{2}$$

bin-to-bin correlated error sources j including

- lepton trigger, ID, isolation efficiencies
- lepton scale and resolution uncertainties
- background contributions
- etc....

- μ^i = measurement
- m^i = averaged value
- *b_j* = systematic error source strength nuisance parameter left free in fit but constrained no extra degrees of freedom due to additional constraint
- y^{i}_{j} = correlated sys uncertainty on point *i* from error source *j*

Method allows cross-calibration of systematics between e and μ channels Improves statistical and systematic precision

Computed with DYNNLO

Eram Rizvi

 $rac{\mathrm{d}^2\sigma}{\mathrm{d}m_{\ell\ell}\mathrm{d}|y_{\ell\ell}|}$ 2d cross sections in back-up

orange band: data uncertainty (excl. lumi \pm 1.9%)

blue band: MC stat + PDF uncertainty

(CT10 68% eigenvectors)

Triple-differential Z/y^* Cross Sections $\sqrt{s} = 8$ TeV

<u>b</u>

Central rapidity electron & muon combined result Large forward-backward asymmetry at low mass, decreasing to ~zero at $m_{\parallel} \sim m_Z$

Upper plots: shaded regions highlight equal $|\cos \theta^*|$

66 < m < 80 GeV

46 < m < 66 GeV

80 < m < 91 GeV

Eram Rizvi

Triple-differential Z/y^* Cross Sections $\sqrt{s} = 8$ TeV

electron / muon combination gives χ^2 /ndf = 489.4 / 451

Eram Rizvi

Triple-differential Z/y^* Cross Sections $\sqrt{s} = 8$ TeV

102 < m < 116 GeV

116 < m < 150 GeV

150 < m < 200 GeV

Forward-Backward Asymmetry

Forward-Backward Asymmetry — high rapidity

High rapidity channel

For **A**_{FB} measurements uncorrelated sources dominate: data stats are factor 2 larger than MC stat / multijet unc / bg MC stats correlated sources ~ factor 10 smaller

- New $d^3\sigma$ measurement of DY cross section at \sqrt{s} = 8 TeV available
- on-shell analysis covers phase space 46 < m < 200 GeV
- Precision of 0.5% attained at m = m_z
- \bullet Data compatible with NNLO pQCD \otimes NLO EW
- Data available on HepData with full systematic breakdown

Now extract $sin^2\theta_{eff}$ using this data

Method of using unfolded $d^3\sigma$ cross sections never used before

Typically experiments measure AFB

- \rightarrow unfold detector effects / dilution \rightarrow fit for $\ sin^2\theta_{eff}$
- \rightarrow or, perform detector level template fits to A_{FB}
- \rightarrow estimate PDF uncertainties on extraction

D0 + CDF combination 2017

$$\sin^2 \theta_{\text{eff}}^{\text{lept}} = 0.23148 \pm 0.00027 \text{ (stat.)}$$

 ± 0.00005 (syst.)

 ± 0.00018 (PDF)

At LHC / Tevatron largest uncertainty ~ PDFs worse at LHC due to pp collisions worse at larger \sqrt{s} due to lower x (more dilution)

ATLAS 7 TeV

 $\sin^2 \theta_{\text{eff}}^{\text{lept}} = 0.2308 \pm 0.0005(\text{stat.}) \pm 0.0006(\text{syst.}) \pm 0.0009(\text{PDF}) = 0.2308 \pm 0.0012(\text{tot.})$

CMS 8 TeV

$$\sin^2 \theta_{\text{eff}}^{\text{lept}} = 0.23101 \pm 0.00036(\text{stat}) \pm 0.00018(\text{syst}) \pm 0.00016(\text{theory}) \pm 0.00030(\text{pdf})$$
$$\sin^2 \theta_{\text{eff}}^{\text{lept}} = 0.23101 \pm 0.00052.$$

Extracting $\sin^2\theta_{eff}$ – PDF Profiling

Variation of A_{FB} from PDF replicas and $sin^2\theta_w$

 $sin^2\theta_w$ variations correlated across m spectrum PDF variations anti-correlated about m=91

These correlations can be exploited Use data to constrain PDFs \rightarrow reduce uncertainty

For NNPDF incompatible replicas rejected by data

Other PDF sets: uncertainties given as eigenvector variations Introduce nuisance parameters for each PDF eigenvector Fit data + PDF nuisance parameters to constrain PDFs

Approximation to performing full PDF fit to data

Extracting $\sin^2\theta_{eff}$

ATLAS-CONF-2018-037/

ATLAS uses 2 methods (same data set / similar selections):

Comparisons to NNLOjet - collaboration with IPPP (Nigel Glover & Duncan Walker) Provide **fiducial** NNLO QCD predictions for varying $\sin^2\theta_W$ Full set of NNLO predictions = ~3-4 days grid time Applfast interface under development (for PDF uncertainties)

QCD scale uncertainties $\mu_R \& \mu_F \sim 0.5\% \dots$

...but larger dependence observed in some kinematic regions...

Slides from Duncan Walker

Region corresponds to

Z recoiling against jet

Using LO kinematics, we can write $\cos \theta^*$ a function of the difference in rapidities of the leptons:

$$\cos \theta^* = \frac{\sinh(\Delta y_{II})}{1 + \cosh(\Delta y_{II})} \to \cos \theta^* \le \frac{\sinh(2(y_I^{max} - |y_{II}|))}{1 + \cosh(2(y_I^{max} - |y_{II}|))}$$

Constraints on Δy_{ll} from the cuts give constraints on $\cos \theta^*$. Only NLO in these bins at $\mathcal{O}(\alpha_S^2) \rightarrow$ use NNLO ZJ calculation?

Observe large theory stat & scale errors in "forbidden region" predictions

 \Rightarrow Use differential A_{FB} in "forbidden region" Scale uncertainty cancels in A_{FB} All data points can be used in fit scale choice $\mu^2 = m^2 + p^2_{T,II}$ Equivalent to m² at LO Apt choice for recoil jet topology

Extracting $\sin^2\theta_{eff} - d^3\sigma$

3.5

 $|y^{\mathbb{I}}|$

3.0

0.05 0.04 0.04 0.04 0.05 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.03 0.02 0.03 0.04 0.05 0.05 1.0 1.5 2.0 $|y^{II}|$

ATLAS-CONF-2018-037/

Triple differential $A_{FB}(m,|y|, \cos \theta^*)$

 $|A_{FB}|$ increases with y A_{FB} negative m<m_Z Smallest for cos $\theta^* \sim 0$

Use predictions of differential $A_{FB}(m,|y|, \cos \theta^*)$ from NNLOjet i.e. defined in slices of equal $|\cos\theta^*|$

Apply identical event reweighting to vary $sin^2\theta_{eff}$ for NLO EW effects in Improved Born Approximation (IBA)

1.5

2.0

2.5

ATLAS-CONF-2018-037/

- ATLAS uses 2 methods (same data set / similar selections):
- Perform fit to unfolded A_{FB} from $d^3\sigma$ cross sections differential in m,|y|, $\cos\theta^*$
- Ai Angular coefficient analysis (methodology used here arXiv:1606.00689)

Angular Coefficients
$$\frac{d\sigma}{dp_T^Z dy^Z dm^Z d\cos\theta d\phi}$$
 $= \frac{3}{16\pi} \frac{d\sigma^{U+L}}{dp_T^Z dy^Z dm^Z}$ factorised
production dynamics
from decay kinematicsFull 5d cross section decomposed into
9 polynomials & 9 coefficients Ai(m,y,pT)
Description is complete to all orders in QCD
- only in full phase space of decay leptons $= \frac{3}{16\pi} \frac{d\sigma^{U+L}}{dp_T^Z dy^Z dm^Z}$ factorised
production dynamics
from decay kinematics $= \frac{3}{16\pi} \frac{d\sigma^{U+L}}{dp_T^Z dy^Z dm^Z}$ $= \frac{3}{16\pi} \frac{d\sigma^{U+L}}{dp_T^Z dy^Z dm^Z}$ factorised
production dynamics
from decay kinematicsFull 5d cross section decomposed into
9 polynomials & 9 coefficients Ai(m,y,pT)
Description is complete to all orders in QCD
- only in full phase space of decay leptons $= \frac{3}{16\pi} \frac{d\sigma^{U+L}}{dp_T^Z dy^Z dm^Z}$ $= \frac{3}{16\pi} \frac{d\sigma^{U+L}}{dp_T^Z dy^Z dm^Z}$ Full 5d cross section decomposed into
9 polynomials & 9 coefficients Ai(m,y,pT)
Description is complete to all orders in QCD
- only in full phase space of decay leptons $= \frac{3}{16\pi} \frac{d\sigma^{U+L}}{dp_T^Z dy^Z dm^Z}$ $= \frac{3}{16\pi} \frac{d\sigma^{U+L}}{dp_T^Z dy^Z dm^Z}$

$$A_{FB} = \frac{8}{3}A_4$$
 in full phase space

A₃ and A₄ related to $sin^2\theta_{eff}$ (A₃ contributes for $p_{T,Z} > 100 \text{ GeV}$)

Using y and m binned data allows PDFs to be profiled Bin data in m, |y|

CC (x2 channels):	CF
m:- {70, 80, 100, 125} GeV	m:- {80, 100} GeV
y :- {0.0, 0.8, 1.6, 2.5}	y :- {1.6, 2.5, 3.6}

Extracting $sin^2\theta_{eff}$ — Angular Coefficients

ATLAS-CONF-2018-037/

eecc: yZ-integrated

folded

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Perform likelihood fits to folded templates on m & |y| bins Use event-wise reweighting to vary $\sin^2\theta_{eff}$ in templates Like performing analytic interpolation:

- known harmonic polynomials fitted to data
- reduces PDF sensitivity

Use linear interpolation model to extract $\sin^2\theta_{eff}$

Eram Rizvi

Detector

ATLAS Simulation

¢ S

6

5

3

2

simulation

ATLAS-CONF-2018-037/

Consistency checks: pull of $sin^2\theta_{eff}$ for different data sub-sets

ATLAS-CONF-2018-037/

Uncertainties on $sin^2\theta_{eff} \ge 10^{-5}$

Channel	ee _{CC}	$\mu\mu_{CC}$	ee _{CF}	$ee_{CC} + \mu\mu_{CC}$	$ee_{CC} + \mu\mu_{CC} + ee_{CF}$
Central value	0.23148	0.23123	0.23166	0.23119	0.23140
	Uncertainties				
Total	68	59	43	49	36
Stat.	48	40	29	31	21
Syst.	48	44	32	38	29
			Uncerta	inties in measuremer	nts
PDF (meas.)	8	9	7	6	4
$p_{\rm T}^Z$ modelling	0	0	7	0	5
Lepton scale	4	4	4	4	3
Lepton resolution	6	1	2	2	1
Lepton efficiency	11	3	3	2	4
Electron charge misidentification	2	0	1	1	< 1
Muon sagitta bias	0	5	0	1	2
Background	1	2	1	1	2
MC. stat.	25	22	18	16	12
	Uncertainties in predictions				
PDF (predictions)	37	35	22	33	24
QCD scales	6	8	9	5	6
EW corrections	3	3	3	3	3

Extracted value / uncertainties of $\sin^2\theta_{eff}$ from $d^3\sigma$ agrees with angular analysis Better precision from CF channel than CC (higher sensitivity / less dilution) Dominated by PDF uncertainty Sizeable uncertainty from data statistics

ATLAS $\sin^2\theta_{eff}$ $\sqrt{s} = 8 \text{ TeV}$

ATLAS-CONF-2018-037/

$$\sin^2 \theta_{\text{eff}}^{\ell} = 0.23140 \pm 0.00021 \text{ (stat.)} \pm 0.00024 \text{ (PDF)} \pm 0.00016 \text{ (syst.)}$$

ATLAS reaches precision of single LEP/SLD experiments and combined CDF/D0 precision

	CT10	CT14	MMHT14	NNPDF31	_
$\sin^2 \theta_{\rm eff}^{\ell}$	0.23118	0.23141	0.23140	0.23146	_
	Uncertainties in measurements				
Total	39	37	36	38	_
Stat.	21	21	21	21	x 10 ⁻⁵
Syst.	32	31	29	31	

0.23

0.231

 $sin^2 \theta'_{eff}$

0.232

Preliminary result Released at ICHEP 2018 Summary - II

ATLAS determination of $sin^2\theta_{eff}$ is nearing completion Timescale - aim for final publication spring 2019 More detailed validation of DYTurbo vs NNLOjet

> cross sections have larger PDF sensitivity allowing in-situ PDF constraints

Triple Differential cross-section method:

- Use NNLO Z+j predictions in "forbidden region" ?
- use mixed method:
 - fit $A_{FB}(m,|y|,|\cos\theta^*|)$ for $|\cos\theta^*| < 0.4 \& m < 66 \text{ GeV}$ fit $d^3\sigma$ for m> 66 GeV & $|\cos\theta^*| < 0.4$

(we already did this and find PDF uncertainty is reduced!)

- using full $d^3\sigma$ in fit yields smallest PDF uncertainty
- perform complete NNLO QCD fit (not PDF profiling)

angular coefficients reduce PDF sensitivity through known harmonic polynomials

Angular coefficients method:

- adjust to $d^3\sigma$ experimental selection
- evaluate statistical uncertainty with bootstraps
- a few experimental checks to complete (SFs etc)
- PDF profiling tests
- PDF reweighting tests
- include A_3 ?

Project is actively pursued in LPCC Electroweak Working Group: ATLAS / CMS / LHCb / Theory

Much to be gained from LHC combination

- LHCb has higher y acceptance (but lower luminosity)
- CMS measurement has no 'forward' acceptance but complementary central channel

Now have 150 fb⁻¹ of data at $\sqrt{s}=13$ TeV \rightarrow factor 15 higher statistical sample (incl factor 2 from cross section) ...but larger \sqrt{s} means lower x \rightarrow worse dilution

Double-differential Z/γ^* Cross Sections $\sqrt{s} = 8$ TeV

Eram Rizvi

UCL Seminar - 26th October 2018

Eram Rizvi

UCL Seminar - 26th October 2018

Extracting $\sin^2\theta_{eff}$ – PDFs

Change to A₄ using NLO corrections

NNLO QCD predictions determined using LO EW theory Close to Z pole:

QED corrections can be factorised from higher order EW corrections

Improved Born Approximation absorbs NLO EW effects into form factors

Initial / final state QED/QCD radiative effects are factorised

calculation performed using DIZET library 6.21

Parameter	Value	Description		
	Measured			
mZ	91.1876 GeV	Mass of Z boson		
m _H	125.0 GeV	Mass of Higgs boson		
m _t	173.0 GeV	Mass of top quark		
m _b	4.7 GeV	Mass of <i>b</i> quark		
$1/\alpha(0)$	137.0359895(61)	QED coupling constant in Thomson limit		
G_{μ}	$1.166389(22) \cdot 10^{-5} \text{ GeV}^{-2}$	Fermi constant from muon lifetime		
	Calculated			
m _W	80.353 GeV	Mass of W boson		
$\sin^2 \theta_W$	0.22351946	On mass-shell-value of weak mixing angle		
$\alpha(m_Z^2)$	0.00775995			
$1/\alpha(m_Z^2)$	128.86674175			
ZPAR(6) - ZPAR(8)	0.23175990	$\overline{sin^2\theta^{\ell}_{eff}(m_Z^2) (e, \mu, \tau)}$		
ZPAR(9)	0.23164930	$sin^2 \theta^u_{eff}(m_Z^2)$ (up quark)		
<i>ZPAR</i> (10)	0.23152214	$sin^2 \theta^d_{eff}(m_Z^2)$ (down quark)		

NLO EW Corrections

fermionic self-energy corrections

boson self-energy corrections

W and Z box diagrams

EW Corrections

- Existing MC samples used for analysis are missing higher order EW corrections
- Factorize gauge invariant set of EW corrections from QCD, and interface with existing MC samples via "after-burn" approach
- Interface to DIZET and KKMC libraries adapted to pp collisions, developed for LEP, to compute EW form factors
 - Exact $O(\alpha)$ + higher order terms
 - Dependent on event kinematics s, $t = s^{*}(1-\cos\theta)/2$
- Insert as event weights in MC sample
- Weights can also be embedded for effective (LO) EW scheme
 - Difference between this and EW FF is quoted to be $\sim 22*10^{-5}$ for Tevatron and CMS (studies ongoing to confirm)
- Allows us to study EW effects at the per-mil level, and scan $\sin^2\theta_W$ within a single MC sample
- Studies to be done cross-checking with PowhegEW generator
- More detailed info <u>here</u>. Will have dedicated talk in next meeting from Elzbieta!

Extracting $\sin^2\theta_{eff}$ — QCD predictions

Initial comparisons of DYTurbo (NLO+NLL) with Powheg (NLO x [NNLO \otimes NLO EW] k-factor)

Prediction code needs tuning / optimisation for:

- integration time & precision for fiducial $d^3\sigma$
- large QCD scale μ_R & μ_F dependence observed in some kinematic regions
- optimisation of resummation scale μ_{Resum} in NLL

Could indicate improved resummation is needed (move to NNLL?)

New ATLAS method:

Perform QCD & EW fit to $d^3\sigma$ cross sections differential in m,|y|, $\cos\theta^*$

Ai - Angular coefficient analysis (methodology used here arXiv:1606.00689)

Target precision on $sin^2\theta_{eff}$ about 30 x 10⁻⁵ (total uncertainty) :

- use large 20 fb⁻¹ luminosity data sample at $\sqrt{s}=8$ TeV
- include FCAL forward electron kinematic region better sensitivity
- use unfolded $d^3\sigma$ to gain PDF sensitivity
- perform simultaneous fit to PDFs and sin² θ_{eff} on same data

Method combine best NNLO QCD & NLO EW predictions Use <u>xFitter</u> framework to perform χ^2 fits Use method of PDF profiling to optimise PDF eigenvalues <u>arXiv:1402.6623</u> Account for correlated experimental systematics Scan for optimum value of sin² θ_{eff}

Ingredient list: State-of-the-art fiducial QCD predictions \otimes NLO EW corrections

ematic regions
ons
!
s sections are published

Extracting $\sin^2\theta_{eff}$ — QCD predictions

Tune resummation calculation on ATLAS 8 TeV Z p_T data

- non-perturbative parameter g

```
Initial optimisation prediction
```

Alternatively - switch to using A_{FB} in some regions where scale errors are large?

LHC Schedule to 2035

* actual schedule slipped by 1 year
 e.g. LS3 starts 2023

Large increases in intensity Requires significant changes to LHC magnets Higher intensity means faster degradation of experiments

Classic problem: how to constrain PDFs at high x for BSM searches?

Measure cross sections at high rapidity

FCAL forward electrons \rightarrow PDF sensitivity up to x=1 at m=500 GeV

General models of new physics SM Lagrangian extended by dimension 6 operators They describe new physics appearing at scale m > \sqrt{s}

- ★ new EW vector bosons
- $\star\,\text{new}\,\text{EW}\,\text{fermions}$
- ★ EW compositeness...

https://arxiv.org/abs/1609.08157

High Mass W/Z/y* Inclusive Cross Sections

Neutral current

Cross section enhancement > factor 5 at large m_{\parallel} Similar for charged current **Charged current**

First measurement off-shell high m_T W[±] production Analogous to neutral current Z/ɣ^{*} measurement

High Mass W/Z/ γ^* Production at $\sqrt{s} = 13$ TeV

 $m_{\mu\mu} > m_Z$ – high muon p_T / new physics / high x partons

- At large Q $\sigma(W^+) > \sigma(W^-) >= \sigma(\gamma^*)$ by ~ factor 2
- Run-II total ∫L~120 fb⁻¹
- Lumi ~ 4-5 times larger than Run-I
- Factor >2 larger cross section at 13 TeV
 ⇒ order of magnitude more data

High mass DY reaches high x region Factor 5 higher x than on-shell Z at 8 TeV At M=300-500 can achieve ~ 2% precision for |y| < 1

