H(126) @ LHC

Jonathan Hays Queen Mary University of London

Outline:

Introduction

Recent results on Higgs searches Recent results on Higgs properties Prospects and Summary

Production

Decay

126 GeV a good place to be with many accessible channels

Combined measurements across many production and decay modes gives access to ratio's of couplings

4

LHC, CMS and ATLAS

ATLAS and CMS: General purpose detectors

LHC:

Proton-proton collider 7TeV in 2011, 8TeV in 2012 13TeV ? in 2015

LHC, CMS and ATLAS

Excellent performance of accelerator and detectors

94% data taking efficiency

CMS Integrated Luminosity, pp, 2012, $\sqrt{s} = 8$ TeV

Introduction

Search channels largely defined by predicted production and decay in SM (+benchmark BSM) and expected ability to detect a signal above background

Original emphasis – many channels, maximise sensitivity to SM

Channel	ggF	VBF	VH	ttH	Spin	Mass
γγ	\checkmark	\checkmark	\checkmark	✓	\checkmark	\checkmark
Z→4I	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
WW→lulu	\checkmark	\checkmark	\checkmark		\checkmark	
Ζγ	\checkmark					
ττ	\checkmark	\checkmark	\checkmark			
μμ	\checkmark					
bb			\checkmark	\checkmark		

Beyond discovery emphasise precise measurement and distinguish between different production modes by looking for extra signatures, leptons, jets, MET

Continue to search for additional Higgs bosons.

Data sets for SM Analyses

Updated at Winter Conferences this year

Higgs to 4 leptons (ZZ)

Updated for winter conferences with full 25fb⁻¹ data set

Golden channel - clear signature and low background

4 final states: 4e, 4μ, 2e2μ, 2μ2e, (+τ for CMS)

Single and double lepton triggers

At least 2 pairs same flavour opposite sign isolated leptons

One tight, one loose Z mass constraint

Event categorizations: VBF-like : jet tags (CMS+ATLAS) VH-like: extra lepton tag (ATLAS)

ATLAS-CONF-2013-013 CMS-PAS-HIG-13-002

S/B ~ 1.4

S/B ~ 1.4

Higgs to 4 leptons (ZZ)

Extract signal from: 4-lepton mass (ATLAS), mass+MELA+other kinematics (CMS)

Main backgrounds: SM ZZ* production (irreducible, from MC)

Top, Z+jets (reducible, data driven techniques)

Higgs to 4 leptons (ZZ) ATLAS: 6.6σ (SM expectation 4.4 σ)

 $m_{H} = 124.3 \pm 0.6 \text{ (stat)} \pm 0.4 \text{ (syst)} \text{ GeV}$

 μ (124.3) = 1.7 + 0.5 - 0.4

ATLAS-CONF-2013-030 CMS-PAS-HIG-13-003 Higgs to 2 leptons and 2 neutrinos (WW)

Select for 2 OS leptons (e or μ) + missing ET + VBF jet tagging for Njets>=2

Categorize according to lepton flavour, jet multiplicity and dilepton mass: varying backgrounds, S/B and sensitivity to production modes

For Njets=0,1 ggF dominates production (CMS+ATLAS) For Njets>=2, additional jet requirements mean VBF dominates (ATLAS) (VH included in signal model but effectively negligible)

Dominant (WW, top, $\tau\tau$) backgrounds modelled with MC normalised in control regions

ATLAS-CONF-2013-030 CMS-PAS-HIG-13-003 Higgs to 2 leptons and 2 neutrinos (WW)

At M_{H} =125 μ_{obs} = 1.01 ± 0.21(stat) ± 0.19 (theo) ± 0.12 (exp) + 0.04 (lumi)

Dominant theory uncertainties from WW background and signal yields

ATLAS-CONF-2013-030 CMS-PAS-HIG-13-003 Higgs to 2 leptons and 2 neutrinos (WW)

At M_H=125, 3.8 σ (3.7exp) μ_{obs} = 1.01 ± 0.21(stat) ± 0.19 (theo) ± 0.12 (exp) + 0.04 (lumi)

At M_H=125, 4.0 σ (5.0exp) μ_{obs} = 0.76 ± 0.13(stat) ± 0.16 (syst)

Higgs to 2 leptons and 2 neutrinos (WW)

Fit for VBF, profiling ggF as background: μ^{VBF}_{obs} = 1.66 ± 0.67(stat) ± 0.42 (syst)

Fit for ggF, profiling VBF as background: $\mu^{ggF}_{obs} = 0.82 \pm 0.24(stat) \pm 0.28$ (syst)

Higgs to photons

Low BR but clean signature of isolated di-photons

Large diphoton backgrounds mitigated by excellent mass resolution ~1.8 GeV

Select events with two high pT isolated photons

Categorize events for resolution, S/B and production mode

ATLAS: cut based categories

CMS: cut based + BDT based categories

Signal extracted from fits to diphoton invariant mass

Low BR but clean signature of isolated di-photons

Higgs to photons

Plus lepton based and di-jet BDT based categories (CMS)

Higgs to photons

Higgs to photons

Exp	Expected signal and estimated background									
Er	iont classes		SM Hig	ggs bos	on expe	cted sig	nal (m _H =12	5 GeV)	Backgr	ound
	ent classes						$\sigma_{ m eff}$	FWHM/2.35	$m_{\gamma\gamma} = 12$	25 GeV
		Total	ggH	VBF	VH	ttH	(GeV)	(GeV)	(ev./G	GeV)
-1	Untagged 0	3.2	61.4%	16.8%	18.7%	3.1%	1.21	1.14	3.3	± 0.4
1 fb	Untagged 1	16.3	87.6%	6.2%	5.6%	0.5%	1.26	1.08	37.5	± 1.3
5	Untagged 2	21.5	91.3%	4.4%	3.9%	0.3%	1.59	1.32	74.8	± 1.9
leV	Untagged 3	32.8	91.3%	4.4%	4.1%	0.2%	2.47	2.07	193.6	± 3.0
2	Dijet tag	2.9	26.8%	72.5%	0.6%	_	1.73	1.37	1.7	± 0.2
-1	Untagged 0	17.0	72.9%	11.6%	12.9%	2.6%	1.36	1.27	22.1	± 0.5
fb_	Untagged 1	37.8	83.5%	8.4%	7.1%	1.0%	1.50	1.39	94.3	± 1.0
9.6	Untagged 2	150.2	91.6%	4.5%	3.6%	0.4%	1.77	1.54	570.5	± 2.6
V 1	Untagged 3	159.9	92.5%	3.9%	3.3%	0.3%	2.61	2.14	1060.9	± 3.5
Te	Dijet tight	9.2	20.7%	78.9%	0.3%	0.1%	1.79	1.50	3.4	± 0.2
~	Dijet loose	11.5	47.0%	50.9%	1.7%	0.5%	1.87	1.60	12.4	± 0.4
	Muon tag	1.4	0.0%	0.2%	79.0%	20.8%	1.85	1.52	0.7	± 0.1
	Electron tag	0.9	1.1%	0.4%	78.7%	19.8%	1.88	1.54	0.7	± 0.1
	$E_{\rm T}^{\rm miss}$ tag	1.7	22.0%	2.6%	63.7%	11.7%	1.79	1.64	1.8	± 0.1

Ц

Higgs to photons

Observed significance 7.4 σ (4.1 σ exp.) μ = 1.65 ± 0.24(stat) ± 0.22(syst)

Consistent with SM at 2.3o

ATLAS-CONF-2013-012 CMS-PAS-13-001

 $m_{H} = 126.8 \pm 0.2(stat) \pm 0.7(syst) \text{ GeV}$

Fit prefers mass 1.8o narrower than nominal. Better than a perfectly uniform calorimeter. Probably due to background fluctuation. 10% lower yield if no fit of resolution.

Higgs to photons

Exploit VBF categories to extract signal strength assuming ggF is background

Fiducial cross section: 8TeV data: $|\eta| < 2.37$, pTy > 40/30 GeV

 $\sigma_{fid} \times BR = 56.2 \pm 12.5 \text{ fb} [\pm 10.5(\text{stat}) \pm 6.5(\text{syst}) \pm 2.0(\text{lumi})]$

Higgs to photons

ATLAS-CONF-2013-012 CMS-PAS-13-001

Excess 3.2σ (4.2 exp)

Alternate analysis finds: 3.9o (3.5 exp)

Strong correlation between analysis ~0.75 compatible at 1.5 sigma level

Excess 3.2σ (4.2 exp)

Alternate analysis finds: 3.9σ (3.5 exp)

Higgs to photons

	MVA analysis	cut-based analysis
	(at <i>m</i> _H =125 GeV)	(at $m_{\rm H}$ =124.5 GeV)
7 TeV	$1.69^{+0.65}_{-0.59}$	$2.27^{+0.80}_{-0.74}$
8 TeV	$0.55\substack{+0.29\\-0.27}$	$0.93^{+0.34}_{-0.32}$
7 + 8 TeV	$0.78\substack{+0.28 \\ -0.26}$	$1.11\substack{+0.32 \\ -0.30}$

Signal strength

 μ = 1.65 ± 0.24(stat) ± 0.22(syst)

Clear tension between these results More data needed to resolve

Higgs to photons

 $m_{H} = 125.4 \pm 0.5(stat) \pm 0.6(syst) GeV$

Higgs to taus

Select events with two opposite sign tau candidates – 0,1 or 2 leptonic decays

Categorize according to lepton and jet multiplicities and event kinematics enhances S/B and sensitivity to ggF, VH and VBF production modes

Dominant background $Z/\gamma^* \rightarrow \tau\tau$, model enhanced from data using $\mu\mu$ events

Not quite sensitive to SM yet at ATLAS Small but not significant excess

Higgs to taus

Poor resolution but not completely mass blind

 $M = 120^{+9} - GeV$

CMS see excess: 2.9o (2.6exp)

30

Higgs to b quarks

Dominant BR at low mass for SM Backgrounds make inclusive search very difficult

Extra signatures in VH and ttH modes make possible

Higgs to b quarks (VH)

Categorization: by lepton content, V boost, b-tagging quality and missing ET

Signal extraction: m_{bb} (ATLAS) and MVA shape (CMS)

Most backgrounds from MC + data normalisation using control regions, Multi-jet data-driven and WZ and ZZ from simulation

Higgs to b-quarks (ttH)

One semi-leptonic top-decay + many jets signature: 1 lepton + high missing ET + >=4 jets

Events categorized according to multiplicity of jets and b-tagged jets

ATLAS: mass/HT analysis, CMS: MVA shape analysis

Some way away from SM sensitivity lots more data needed

associated prod. with tt

н

ATLAS-CONF-2012-35

0000000000

g

CMS-PAS-13-015

Higgs to photons (ttH)

Two approaches: leptonic and hadronic (top decays)

Process	Hadronic Channel	Leptonic Channel
$t\bar{t}H$	0.567~(87%)	0.429~(97%)
gg ightarrow H	0.059~(9%)	0 (0%)
VBF H	0.006~(1%)	0 (0%)
WH/ZH	0.019~(3%)	0.013~(3%)
Total signal	0.65	0.44

ATLAS-CONF-2013-009

Higgs to Z + photon

Similar to diphoton channel Loop production modes

Relative rate to diphoton interesting and sensitive to BSM

Higgs to Z + photon

Similar to diphoton channel Loop production modes

Relative rate to diphoton interesting and sensitive to BSM

ATLAS-CONF-2013-009 CMS-PAS-HIG-13-006

36

Higgs to muons

Probe Yukawa interactions for second generation fermions

Select events with two OS isolated high pT muons

Extract signal from dimuon mass spectrum

Mass resolution ~2.3 GeV @ 125

Huge Z/γ^* background dominates

No evidence for a signal at present Not yet sensitive to SM rates
Higgs Mass

 $m_{41} = 124.3 \pm 0.6 \text{ (stat)} \pm 0.4 \text{ (syst) GeV}$ $m_{\gamma\gamma} = 126.8 \pm 0.2 \text{(stat)} \pm 0.7 \text{(syst) GeV}$

m_H=125.5±0.2 (stat) _{-0.6}^{+0.5} (syst) GeV

 $m_{41} = 125.8 \pm 0.5 \text{ (stat)} \pm 0.2 \text{ (syst) GeV}$ $m_{_{YY}} = 125.4 \pm 0.5 \text{ (stat)} \pm 0.6 \text{ (syst) GeV}$

m_H=125.7±0.3 (stat) ± 0.3 (syst) GeV

Energy scale systematics dominant for ZZ, electron-photon and energy scale extrapolation dominant for $\gamma\gamma$

 $\Delta m_{H} = m_{vv} - m_{4/} = 2.3_{-0.7}^{+0.6}$ (stat) ±0.6 (syst) GeV

Consistent with $\Delta m_{\rm H} = 0$ at 2.3 σ level

Combined results compatible across experiments

Higgs Signal Strength

ATLAS-CONF-2013-14 ATLAS-CONF-2013-34 CMS-PAS-13-005

Consistent with the SM

Higgs Signal Strength

ATLAS-CONF-2013-14 ATLAS-CONF-2013-34 CMS-PAS-13-005

Model dependence in BR factored out in ratio allows for combination across channels

p-value for excluding VBF/ggF = 0
 0.05% (fixing ratio VH/VBF)
 0.09% (profiling ratio VH/VBF)
~ 3 sigmas

Higgs Signal Strength

Largely use parameterisations from LHCHXSWG arXiv:1209.0040

ATLAS-CONF-2013-14 ATLAS-CONF-2013-34 CMS-PAS-13-005

$$(\sigma \cdot \mathrm{BR}) (ii \to \mathrm{H} \to ff) = \frac{\sigma_{ii} \cdot \Gamma_{ff}}{\Gamma_{\mathrm{H}}}$$

Production modes

$$\frac{\sigma_{\text{ggH}}}{\sigma_{\text{ggH}}^{\text{SM}}} = \begin{cases} \kappa_{\text{g}}^{2}(\kappa_{\text{b}}, \kappa_{\text{t}}, m_{\text{H}}) \\ \kappa_{\text{g}}^{2} \end{cases}$$

$$\frac{\sigma_{\text{VBF}}}{\sigma_{\text{VBF}}^{\text{SM}}} = \kappa_{\text{VBF}}^{2}(\kappa_{\text{W}}, \kappa_{\text{Z}}, m_{\text{H}})$$

$$\frac{\sigma_{\text{WH}}}{\sigma_{\text{WH}}^{\text{SM}}} = \kappa_{\text{W}}^{2}$$

$$\frac{\sigma_{\text{ZH}}}{\sigma_{\text{ZH}}^{\text{SM}}} = \kappa_{\text{Z}}^{2}$$

$$\frac{\sigma_{\text{t}\overline{\text{t}}}}{\sigma_{\text{t}\overline{\text{t}}}} = \kappa_{\text{L}}^{2}$$

Assume all signals near 126 come from a single resonance of zero width, with SM-like coupling structure

Total width = sum of all decays widths (+ invisible)

Decay modes

$$\begin{aligned} \frac{\Gamma_{WW}^{(*)}}{\Gamma_{WW}^{SM}} &= \kappa_W^2 \\ \frac{\Gamma_{ZZ}^{(*)}}{\Gamma_{ZZ}^{SM}} &= \kappa_Z^2 \\ \frac{\Gamma_{b\overline{b}}}{\Gamma_{b\overline{b}}^{SM}} &= \kappa_B^2 \\ \frac{\Gamma_{\tau^-\tau^+}}{\Gamma_{\tau^-\tau^+}} &= \kappa_\tau^2 \\ \frac{\Gamma_{\gamma\gamma}}{\Gamma_{\gamma\gamma}^{SM}} &= \left\{ \begin{array}{c} \kappa_\gamma^2(\kappa_b, \kappa_t, \kappa_\tau, \kappa_W, m_H) \\ \kappa_\gamma^2 \\ \frac{\Gamma_{Z\gamma}}{\Gamma_{Z\gamma}^{SM}} &= \left\{ \begin{array}{c} \kappa_{(Z\gamma)}^2(\kappa_b, \kappa_t, \kappa_\tau, \kappa_W, m_H) \\ \kappa_{(Z\gamma)}^2 \end{array} \right\} \end{aligned}$$

Largely use parameterisations from LHCHXSWG arXiv:1209.0040

$$(\sigma \cdot \mathrm{BR}) (ii \to \mathrm{H} \to ff) = \frac{\sigma_{ii} \cdot \Gamma_{ff}}{\Gamma_{\mathrm{H}}}$$

Assume all signals near 126 come from a single resonance of zero width, with SM-like coupling structure

Total width = sum of all decays widths (+ invisible)

Decay modes

Loops can be resolved into constituent contributions assuming SM or left as free parameter -> BSM

2 parameter model

$$\kappa_V = \kappa_W = \kappa_Z$$

 $\kappa_F = \kappa_t = \kappa_b = \kappa_\tau = \kappa_g$
 $\kappa_F \in [-0.88, -0.75] \cup [0.73, 1.07]$
 $\kappa_V \in [0.91, 0.97] \cup [1.05, 1.21]$.

-2 ln $\Lambda(\kappa_F)$

Compatible with the SM

 $\Gamma_{\gamma\gamma} \sim |\alpha\kappa_F + \beta\kappa_V|^2$

photon loop could give access to relative sign

Higgs fits

2 parameter model

 $\lambda_{FV} = 0.85^{+0.23}_{-0.13}$

3 parameter model – don't resolve the photon loop

3D compatibility with SM 9%

Custodial symmetry

ATLAS-CONF-2013-14 ATLAS-CONF-2013-34 CMS-PAS-13-005

$$\kappa_{ZZ} = \kappa_Z \cdot \kappa_Z / \kappa_H$$

$$\lambda_{WZ} = \kappa_W / \kappa_Z$$

$$\lambda_{FZ} = \kappa_F / \kappa_Z$$

Compatible with the SM

λ_{WZ}	∈	[0.64, 0.87]
λ_{FZ}	∈	[-0.89, -0.55]
ĸzz	∈	[1.20, 2.08]

 λ_{FZ} prefers non-physical region but not strongly compared with +ve quadrant minimum

3D SM compatibility 5%

Custodial symmetry

ATLAS-CONF-2013-14 ATLAS-CONF-2013-34 CMS-PAS-13-005

3D SM compatibility 5%

κ _{ZZ} λ _{WZ}	=	$\frac{\kappa_{Z}\cdot\kappa_{Z}/\kappa_{H}}{\kappa_{W}/\kappa_{Z}}$		C w	ompatible ith the SM
λ_{FZ}	=	κ_F/κ_Z .	λ_{WZ}	e	[0.64, 0.87]
			λ_{FZ}	∈	[-0.89, -0.55]
			ĸzz	∈	[1.20, 2.08]

Decouple from diphoton rate

$$\begin{aligned} \kappa_{ZZ} &= \kappa_Z \cdot \kappa_Z / \kappa_H & \lambda_{WZ} &= 0.80 \pm 0.15 \\ \lambda_{WZ} &= \kappa_W / \kappa_Z & \lambda_{\gamma Z} &= 1.10 \pm 0.18 \\ \lambda_{\gamma Z} &= \kappa_{\gamma} / \kappa_Z & \lambda_{FZ} &= 0.74^{+0.21}_{-0.17} \\ \lambda_{FZ} &= \kappa_F / \kappa_Z & \kappa_{ZZ} &= 1.5^{+0.5}_{-0.4} \end{aligned}$$

4D SM compatibility 9%

Custodial symmetry

Using only WW and ZZ channels

ATLAS-CONF-2013-14 ATLAS-CONF-2013-34 CMS-PAS-13-005

Using all channels

Compatible with the SM

Probing the loops

Higgs fits

 1.08 ± 0.14 κg $1.23_{-0.13}^{+0.16}$ κ

Compatible

with the SM

3D SM compatibility 10%

 $\Gamma_{\rm H} = \frac{\kappa_{\rm H}^2(\kappa_i)}{(1 - BR_{\rm inv})}$ $-\Gamma_{\rm H}^{\rm SM}$

ATLAS-CONF-2013-14

ATLAS-CONF-2013-34

CMS-PAS-13-005

 \mathbf{k}_{g}

2.2

2

1.8 1.6

1.4

1.2

0.8

0.6

Probing the loops

Compatible with the SM

 $\Gamma_{\rm H} = \frac{\kappa_{\rm H}^2(\kappa_i)}{(1 - {\rm BR}_{\rm inv.,undet.})} \Gamma_{\rm H}^{\rm SM}$

No significant deviation from the SM seen in any of the benchmark fits performed.

ATLAS-CONF-2013-14 ATLAS-CONF-2013-34 CMS-PAS-13-005

Compatible with the SM

Compare 0+ with 2+ "graviton" model with minimal couplings in diphotons

Fit 2D product PDF in $m_{vv} x \cos\theta^*$

2+ disfavoured for ggF production

ATLAS-CONF-2013-029

$f(0/_{0})$	Spin	p-values (%)		1 CL $_{a}(2^{+})(\%)$
$J_{q\bar{q}}(n)$	hypothesis	expected	observed	$1 - CL_{S}(2)(70)$
0	0+	1.2	58.8	00.2
U	2+	0.5	0.3	99.5
25	0+	5.2	60.9	94.6
2.5	2+	3.9	2.1	94.0
50	0+	19.8	70.8	74
50	2+	18.7	7.6	/4
75	0+	31.9	90.2	66
15	2+	30.5	3.3	00
100	0+	14.8	79.8	88
100	2+	13.5	2.5	00

Compare 0+ with 2+ "graviton" model with minimal couplings in WW \rightarrow IIvv

Slightly different selection to rate analysis to remove spin dependent assumptions

ATLAS-CONF-2013-031

Variable	Spin analysis	Rate analysis [5]					
common $e\mu/\mu e$ lepton selection							
E ^{miss} T.rel	> 20 GeV	> 25 GeV					
Njets	0 jets	0, 1, ≥ 2 jet selections					
$p_{\rm T}^{\ell\ell}$	> 20 GeV	> 30 GeV					
mee	< 80 GeV	< 50 GeV					
$\Delta \phi_{\ell \ell}$	< 2.8	< 1.8					

BDTs trained to reject background versus each signal hypothesis

ATLAS-CONF-2013-013

Compare 0+ with variety of spin models in 4leptons

0- and 1+ excluded at >97.5%CL in favour of 0+

Data also favour 0+ versus 2+ with little variation versus qq fraction

25 Entries **ATLAS** Prelimina Background ZZ $H \rightarrow ZZ^{(*)} \rightarrow 4I$ Background Z+iets, tt 18 Signal (m = 125 GeV) 16 J^P = 0⁺ $\sqrt{s} = 7 \text{ TeV} \int \text{Ldt} = 4.6 \text{ fb}^{-1}$ = 0 $\sqrt{s} = 8 \text{ TeV} \int Ldt = 20.7 \text{ fb}^{-2}$ 12 10 2 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 J^P-MELA Discriminant

55

2 approaches MELA and BDT

			BDT	analysis		J ^P -MELA analysis				
		tested J^P for		tested 0 ⁺ for		tested J^P for		tested 0 ⁺ for		
		an assumed 0 ⁺		an assumed J^P	CLS	an assu	med 0 ⁺	an assumed J^P	CLS	
		expected	observed	observed*	Ī	expected	observed	observed*	Ī	
0-	p_0	0.0037	0.015	0.31	0.022	0.0011	0.0022	0.40	0.004	
1+	p_0	0.0016	0.001	0.55	0.002	0.0031	0.0028	0.51	0.006	
1-	p_0	0.0038	0.051	0.15	0.060	0.0010	0.027	0.11	0.031	
2_{m}^{+}	p_0	0.092	0.079	0.53	0.168	0.064	0.11	0.38	0.182	
2-	p_0	0.0053	0.25	0.034	0.258	0.0032	0.11	0.08	0.116	

ATLAS-CONF-2013-040

Combine all the 0+ versus 2+ studies

$f_{q\bar{q}}$	Spin-2 assumed exp. $p_0(J^P = 0^+)$	Spin-0 assumed exp. $p_0(J^P = 2^+)$	obs. $p_0(J^P = 0^+)$	obs. $p_0(J^P = 2^+)$	$\operatorname{CL}_{\mathrm{s}}(J^p=2^+)$
100%	$3.4 \cdot 10^{-3}$	$9.4 \cdot 10^{-5}$	0.82	$0.4 \cdot 10^{-5}$	$0.2 \cdot 10^{-4}$
75%	$1.0 \cdot 10^{-2}$	$1.1 \cdot 10^{-3}$	0.82	$3.7 \cdot 10^{-5}$	$2.1 \cdot 10^{-4}$
50%	$1.5 \cdot 10^{-2}$	$3.5 \cdot 10^{-3}$	0.85	$9.1 \cdot 10^{-5}$	$6.0 \cdot 10^{-4}$
25%	$6.8 \cdot 10^{-3}$	$2.4 \cdot 10^{-3}$	0.81	$1.0 \cdot 10^{-4}$	$5.3 \cdot 10^{-4}$
0%	$1.6 \cdot 10^{-3}$	$6.1 \cdot 10^{-4}$	0.65	$1.4 \cdot 10^{-4}$	$4.0 \cdot 10^{-4}$

2+ excluded at better than 99.9%CL versus 0+ for all qq fractions

WW+ZZ gg $\rightarrow 2^+_m$ versus SM H

	Expected 1-CL _s	Observed 1-CL _s
ZZ	93.1%	98.6%
ww	91.9%	86.0%
Combination	98.8%	99.4%

 $gg \rightarrow 2_m^+$ excluded at 99% CL in combined result

Summary and prospects

Huge programme of work searching for a measuring Higgs boson signals

Results so far are largely compatible with Standard Model

 $\frac{\Delta\mu}{\mu}$

Prospects

Where to look next?

Continue to push SM searches Real challenges with pile-up and systematics

Global fits Everything SM like for now...

Look for additional Higgs bosons Existing searches with H(126) as background

Traditional BSM searches – eg MSSM, Charged Higgs, etc Add H(126) as additional part of the signal

Open up new BSM searches: Generic 2HDM, decoupled or otherwise Higgs pair production : H+h, hh, H+H-, H+A, etc...

Summary and prospects

Higgs signal firmly established

But plenty of work still to do for the foreseeable future!

HIGGS TO 4 LEPTONS

Backup slides

Higgs to 4 leptons

Event yields

Table 7: The numbers of expected signal events for the m_H =125 GeV hypothesis and background events together with the numbers of observed events, in a window of ±5 GeV around 125 GeV for 20.7 fb⁻¹ at $\sqrt{s} = 8$ TeV and 4.6 fb⁻¹ at $\sqrt{s} = 7$ TeV as well as for their combination.

	total signal	signal	$ZZ^{(*)}$	$Z + jets, t\bar{t}$	S/B	expected	observed		
	full mass range								
	$\sqrt{s} = 8 \text{ TeV}$								
4μ	5.8 ± 0.7	5.3 ± 0.7	2.3 ± 0.1	0.50 ± 0.13	1.9	8.1 ± 0.9	11		
$2\mu 2e$	3.0 ± 0.4	2.6 ± 0.4	1.2 ± 0.1	1.01 ± 0.21	1.2	4.8 ± 0.7	4		
$2e2\mu$	4.0 ± 0.5	3.4 ± 0.4	1.7 ± 0.1	0.51 ± 0.16	1.5	5.6 ± 0.7	6		
4e	2.9 ± 0.4	2.3 ± 0.3	1.0 ± 0.1	0.62 ± 0.16	1.4	3.9 ± 0.6	6		
total	15.7 ± 2.0	13.7 ± 1.8	6.2 ± 0.4	2.62 ± 0.34	1.6	22.5 ± 2.9	27		
			$\overline{s} = 7 \text{ TeV}$						
4μ	1.0 ± 0.1	0.97 ± 0.13	0.49 ± 0.02	0.05 ± 0.02	1.8	1.5 ± 0.2	2		
$2\mu 2e$	0.4 ± 0.1	0.39 ± 0.05	0.21 ± 0.02	0.55 ± 0.12	0.5	1.2 ± 0.1	1		
$2e2\mu$	0.7 ± 0.1	0.57 ± 0.08	0.33 ± 0.02	0.04 ± 0.01	1.5	0.9 ± 0.1	2		
4e	0.4 ± 0.1	0.29 ± 0.04	0.15 ± 0.01	0.49 ± 0.12	0.5	0.9 ± 0.1	0		
total	2.5 ± 0.4	2.2 ± 0.3	1.17 ± 0.07	1.12 ± 0.17	1.0	4.5 ± 0.5	5		
		$\sqrt{s} = 8 \text{ TeV}$	V and $\sqrt{s} = 7$	7 TeV					
4μ	6.8 ± 0.8	6.3 ± 0.8	2.8 ± 0.1	0.55 ± 0.15	1.9	9.6 ± 1.0	13		
$2\mu 2e$	3.4 ± 0.5	3.0 ± 0.4	1.4 ± 0.1	1.56 ± 0.33	1.0	6.0 ± 0.8	5		
$2e2\mu$	4.7 ± 0.6	4.0 ± 0.5	2.1 ± 0.1	0.55 ± 0.17	1.5	6.6 ± 0.8	8		
4e	3.3 ± 0.5	2.6 ± 0.4	1.2 ± 0.1	1.11 ± 0.28	1.1	4.9 ± 0.8	6		
total	18.2 ± 2.4	15.9 ± 2.1	7.4 ± 0.4	3.74 ± 0.93	1.4	27.1 ± 3.4	32		

ATLAS-CONF-2013-013

Higgs to 4 leptons

One VBF-tag event at 123.5 GeV, expect 0.4 from SM (in low mass region)

ATLAS-CONF-2013-013 CMS-PAS-HIG-13-002

Higgs to 4 leptons

 $m_{H} = 124.3 \pm 0.6 \text{ (stat)} \pm 0.4 \text{ (syst)} \text{ GeV}$

m_H = 125.8 \pm 0.5 (stat) \pm 0.2 (syst) GeV μ (125.8) = 0.91 $^{+0.3}$ $_{-0.24}$

 μ (124.3) = 1.7 + 0.5 - 0.4

Higgs to 4 leptons

P-values

Higgs to 4 leptons

Likelihood scan

Figure 11: (a) Likelihood contours in the $(\mu_{ggF+t\bar{t}H}, \mu_{VBF+VH})$ plane including the branching ratio factor B/B_{SM} . The quantity $\mu_{ggF+t\bar{t}H}$ (μ_{VBF+VH}) is a common scale factor for the ggF and $t\bar{t}H$ (VBF and VH) production cross sections. Only the part of the plane where the expected numbers of signal events in each category is positive is considered. The best fit to the data (×) and $-2 \ln \Lambda < 2.3$ (full) and 6.0 (dashed) contours are also indicated, as well as the SM expectation (+). (b) Results of a likelihood scan for $\mu_{VBF+VH}/\mu_{ggF+t\bar{t}H}$. The branching ratio factor B/B_{SM} cancels out in this ratio.

17/05/2013

HIGGS TO 2 LEPTONS AND 2 NEUTRINOS

Backup slides

MC Generators

Signal	MC generator σ	$\cdot \mathcal{B}(\mathrm{pb})$	Background	MC generator	$\boldsymbol{\sigma}\cdot\boldsymbol{\mathcal{B}}\left(pb\right)$
ggF	Powheg [30]+Pythia8 [31]	0.44	$q\bar{q}, gq \rightarrow WW$	Powheg+Pythia6 [32]	5.7
VBF	Powheg+Pythia8	0.035	$q\bar{q}, gq \rightarrow WW + 2j$	Sherpa [33] with no $O(\alpha_s)$ terms	0.039
VH	Рутніа8	0.13	$gg \rightarrow WW$	GG2WW 3.1.2 [34, 35]+Herwig [36]	0.16
			$t\bar{t}$	MC@NLO [37]+Herwig	240
			Single top: tW, tb	MC@NLO+Herwig	28
			Single top: <i>tqb</i>	AcerMC [38]+Pythia6	88
			Z/γ^* , inclusive	Alpgen+Herwig	16000
			$Z^{(*)} \rightarrow \ell\ell + 2j$	Sherpa processes up to $O(\alpha_s)$	1.2
			$Z^{(*)}Z^{(*)} \to 4\ell$	Powheg+Pythia8	0.73
			$WZ/W\gamma^*, m_{Z/\gamma^*} > 7$	Powheg+Pythia8	0.83
			$W\gamma^*, m_{\gamma^*} \leq 7$	MadGraph [39–41]+Рутніа6	11
			$W\gamma$	Alpgen+Herwig	370

Table 2: Selection listing for 8 TeV data. The criteria specific to $e\mu + \mu e$ and $ee + \mu\mu$ are noted as such; otherwise, they apply to both. Pre-selection applies to all N_{jet} modes. The rapidity gap is the *y* range spanned by the two leading jets. The $m_{\ell\ell}$ split is at 30 GeV. The modifications for the 7 TeV analysis are given in Section 6 and are not listed here. Energies, masses, and momenta are in units of GeV.

Category	$N_{\rm jet} = 0$	$N_{\rm jet} = 1$	$N_{\text{jet}} \ge 2$
Pre-selection	Two is Lepton $e\mu + \mu$ $ee + \mu$	solated leptons $(\ell = e, \mu)$ winns with $p_{\rm T}^{\rm lead} > 25$ and $p_{\rm T}^{\rm suble}$ $e: m_{\ell\ell} > 10$ $\mu: m_{\ell\ell} > 12, m_{\ell\ell} - m_Z > 1$	th opposite charge ^{ad} > 15 5
Missing transverse momentum and hadronic recoil	$\begin{array}{l} e\mu + \mu e: \; E_{\rm T,rel}^{\rm miss} > 25 \\ ee + \mu \mu: \; E_{\rm T,rel}^{\rm miss} > 45 \\ ee + \mu \mu: \; p_{\rm T,rel}^{\rm miss} > 45 \\ ee + \mu \mu: \; f_{\rm recoil} < 0.05 \end{array}$	$\begin{array}{l} e\mu + \mu e: \ E_{\mathrm{T,rel}}^{\mathrm{miss}} > 25\\ ee + \mu \mu: \ E_{\mathrm{T,rel}}^{\mathrm{miss}} > 45\\ ee + \mu \mu: \ p_{\mathrm{T,rel}}^{\mathrm{miss}} > 45\\ ee + \mu \mu: \ f_{\mathrm{recoil}} < 0.2 \end{array}$	$e\mu + \mu e: E_{\rm T}^{\rm miss} > 20$ $ee + \mu\mu: E_{\rm T}^{\rm miss} > 45$ $ee + \mu\mu: E_{\rm T,STVF}^{\rm miss} > 35$
General selection	$ \begin{vmatrix} \Delta \phi_{\ell\ell,MET} \\ p_{\rm T}^{\ell\ell} > 30 \end{vmatrix} > \pi/2 $	$N_{b\text{-jet}} = 0$ - $e\mu + \mu e: Z/\gamma^* \to \tau \tau \text{ veto}$	$N_{b\text{-jet}} = 0$ $p_{T}^{\text{tot}} < 45$ $e\mu + \mu e: Z/\gamma^* \rightarrow \tau\tau \text{ veto}$
VBF topology			$m_{jj} > 500$ $ \Delta y_{jj} > 2.8$ No jets ($p_T > 20$) in rapidity gap Require both ℓ in rapidity gap
$H \rightarrow WW^{(*)} \rightarrow \ell \nu \ell \nu$ topology	$m_{\ell\ell} < 50$ $ \Delta \phi_{\ell\ell} < 1.8$ $e\mu + \mu e: \text{ split } m_{\ell\ell}$ Fit m_{T}	$m_{\ell\ell} < 50$ $ \Delta\phi_{\ell\ell} < 1.8$ $e\mu + \mu e: \text{ split } m_{\ell\ell}$ Fit $m_{\rm T}$	$m_{\ell\ell} < 60$ $ \Delta\phi_{\ell\ell} < 1.8$ - Fit $m_{\rm T}$

Table 3: Background treatment listing. The estimation procedures for various background processes are given in four categories: normalised using a control region (CR); data-derived estimate (Data); normalised using the MC (MC); and normalised using the MC, but validated in a control region (MC + VR). The " $(e\mu + \mu e)$ " terms denote that for the $ee + \mu\mu$ channel in the same N_{jet} mode, the $e\mu + \mu e$ region is used instead, for reasons of purity and/or statistics. The "(merged)" terms indicate that the fully combined $e\mu + \mu e + ee + \mu\mu$ control region is used for all channels.

Channel	WW	Тор	$Z/\gamma^* \rightarrow \tau \tau$	$Z/\gamma^* {\rightarrow} \ell\ell$	W+ jets	VV
$N_{jet} = 0$ $e\mu + \mu e$ $ee + \mu\mu$	$\begin{array}{c} \text{CR} \\ \text{CR} \left(e\mu + \mu e \right) \end{array}$	$\begin{array}{c} \text{CR} \\ \text{CR} \left(e\mu + \mu e \right) \end{array}$	$\begin{array}{c} \text{CR} \\ \text{CR} \left(e\mu + \mu e \right) \end{array}$	MC Data	Data Data	MC + VR MC + VR
$N_{jet} = 1$ $e\mu + \mu e$ $ee + \mu\mu$	$\begin{array}{c} \text{CR} \\ \text{CR} \left(e\mu + \mu e \right) \end{array}$	$\begin{array}{c} \text{CR} \\ \text{CR} \left(e\mu + \mu e \right) \end{array}$	$\begin{array}{c} \text{CR} \\ \text{CR} \left(e\mu + \mu e \right) \end{array}$	MC Data	Data Data	MC + VR MC + VR
$N_{\text{jet}} \ge 2$ $e\mu + \mu e$ $ee + \mu\mu$	MC MC	CR (merged) CR (merged)	$\begin{array}{c} \text{CR} \\ \text{CR} \left(e\mu + \mu e \right) \end{array}$	MC Data	Data Data	MC MC

VBF
Higgs to 2 leptons and 2 neutrinos

Table 13: Leading uncertainties on the signal strength μ for the combined 7 and 8 TeV analysis.

Category	Source	Uncertainty, up (%)	Uncertainty, down (%)
Statistical	Observed data	+21	-21
Theoretical	Signal yield $(\sigma \cdot \mathcal{B})$	+12	-9
Theoretical	WW normalisation	+12	-12
Experimental	Objects and DY estimation	+9	-8
Theoretical	Signal acceptance	+9	-7
Experimental	MC statistics	+7	-7
Experimental	W+ jets fake factor	+5	-5
Theoretical	Backgrounds, excluding WW	+5	-4
Luminosity	Integrated luminosity	+4	-4
Total		+32	-29

ATLAS-CONF-2013-030 CMS-PAS-HIG-13-003 Higgs to 2 leptons and 2 neutrinos (WW)

Dominant (WW, top, $\tau\tau$) backgrounds modelled with MC normalised in control regions

HIGGS TO PHOTONS

Backup slides

Higgs to photons

\sqrt{s}				8 TeV			
Category	N _D	N_S	$gg \to H [\%]$	VBF [%]	WH [%]	ZH [%]	ttH [%]
Unconv. central, low p_{Tt}	10900	51.8	93.7	4.0	1.4	0.8	0.2
Unconv. central, high p_{Tt}	553	7.9	79.3	12.6	4.1	2.5	1.4
Unconv. rest, low p_{Tt}	41236	107.9	93.2	4.0	1.6	1.0	0.1
Unconv. rest, high p_{Tt}	2558	16.0	78.1	13.3	4.7	2.8	1.1
Conv. central, low p_{Tt}	7109	33.1	93.6	4.0	1.3	0.9	0.2
Conv. central, high p_{Tt}	363	5.1	78.9	12.6	4.3	2.7	1.5
Conv. rest, low p_{Tt}	38156	97.8	93.2	4.1	1.6	1.0	0.1
Conv. rest, high p_{Tt}	2360	14.4	77.7	13.0	5.2	3.0	1.1
Conv. transition	14864	40.1	90.7	5.5	2.2	1.3	0.2
Loose high-mass two-jet	276	5.3	45.0	54.1	0.5	0.3	0.1
Tight high-mass two-jet	136	8.1	23.8	76.0	0.1	0.1	0.0
Low-mass two-jet	210	3.3	48.1	3.0	29.7	17.2	1.9
$E_{\rm T}^{\rm miss}$ significance	49	1.3	4.1	0.5	35.7	47.6	12.1
One-lepton	123	2.9	2.2	0.6	63.2	15.4	18.6
All categories (inclusive)	118893	395.0	88.0	7.3	2.7	1.5	0.5

Higgs to photons

Table 2: Signal mass resolution (σ_{CB}), number of observed events, number of expected signal events (N_S), number of expected background events (N_B) and signal to background ratio (N_S/N_B) in a mass window around $m_H = 126.5$ GeV containing 90% of the expected signal for each of the 14 categories of the 8 TeV data analysis. The numbers of background events are obtained from the background + signal fit to the $m_{\gamma\gamma}$ data distribution.

\sqrt{s}	8 TeV				
Category	$\sigma_{CB}(\text{GeV})$	Observed	N_S	N_B	N_S/N_B
Unconv. central, low p_{Tt}	1.50	911	46.6	881	0.05
Unconv. central, high p_{Tt}	1.40	49	7.1	44	0.16
Unconv. rest, low p_{Tt}	1.74	4611	97.1	4347	0.02
Unconv. rest, high p_{Tt}	1.69	292	14.4	247	0.06
Conv. central, low p_{Tt}	1.68	722	29.8	687	0.04
Conv. central, high p_{Tt}	1.54	39	4.6	31	0.15
Conv. rest, low p_{Tt}	2.01	4865	88.0	4657	0.02
Conv. rest, high p_{Tt}	1.87	276	12.9	266	0.05
Conv. transition	2.52	2554	36.1	2499	0.01
Loose High-mass two-jet	1.71	40	4.8	28	0.17
Tight High-mass two-jet	1.64	24	7.3	13	0.57
Low-mass two-jet	1.62	21	3.0	21	0.14
$E_{\rm T}^{\rm miss}$ significance	1.74	8	1.1	4	0.24
One-lepton	1.75	19	2.6	12	0.20
Inclusive	1.77	14025	355.5	13280	0.03

Higgs to photons

Table 3: Cross sections for the Standard Model Higgs boson production with $m_H = 126.5$ GeV at $\sqrt{s} = 8$ TeV [57, 58]. The branching ratio to the two photons decay mode is $2.28 \cdot 10^{-3}$ at $m_H = 126.5$ GeV. Gluon fusion and vector boson fusion cross sections are computed in the complex pole scheme at NNLL+NNLO QCD and NLO EW [58]. Associated production cross section are computed with zero-width-approximation at NNLO QCD and NLO EW. The ttH process cross section is computed with zero-width-approximation at NLO QCD. QCD scale (±Scale) and the PDF+ α_s uncertainties are treated as non-correlated [68].

Process	Cross section (pb)	+Scale %	-Scale %	+(PDF+ α_s)%	-(PDF+ α_s)%
ggF	19.07	+7.2	-7.8	+7.5	-6.9
VBF	1.56	+0.2	-0.2	+2.6	-2.7
WH	0.67	+0.2	-0.6	+3.5	-3.5
ZH	0.38	+1.6	-1.5	+3.6	-3.6
ttH	0.13	+3.8	-9.3	+7.8	-7.8

Higgs to photons

Table 4: Systematic uncertainty on the number of fitted signal events due to the background model for the $\sqrt{s} = 7$ TeV (10 categories) and $\sqrt{s} = 8$ TeV (14 categories) analyses. Three different background models are used depending on the category; an exponential function, a fourth order polynomial and the exponential of a second order polynomial.

Category	Parametrisation	Uncertainty [Nevt]	
		$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$
Inclusive	4th order pol.	7.3	12.0
Unconverted central, low p_{Tt}	Exp. of 2nd order pol.	2.1	4.6
Unconverted central, high p_{Tt}	Exponential	0.2	0.8
Unconverted rest, low p_{Tt}	4th order pol.	2.2	11.4
Unconverted rest, high p_{Tt}	Exponential	0.5	2.0
Converted central, low p_{Tt}	Exp. of 2nd order pol.	1.6	2.4
Converted central, high p_{Tt}	Exponential	0.3	0.8
Converted rest, low p_{Tt}	4th order pol.	4.6	8.0
Converted rest, high p_{Tt}	Exponential	0.5	1.1
Converted transition	Exp. of 2nd order pol.	3.2	9.1
Loose high-mass two-jet	Exponential	0.4	1.1
Tight high-mass two-jet	Exponential	-	0.3
Low-mass two-jet	Exponential	-	0.6
$E_{\rm T}^{\rm miss}$ significance	Exponential	-	0.1
One-lepton	Exponential	-	0.3

Higgs to photons

Table 5: Summary of the impact of systematic uncertainties on the signal yields for the analysis of the 8 TeV data.

Systematic uncertainties	Value(%)			Constraint
Luminosity	±3.6			
Trigger	±0.5			
Photon Identification		±2.4		Log-normal
Isolation		±1.0		
Photon Energy Scale		±0.25		
Branching ratio	$\pm 5.9\% - \pm 2.1\%$ ($m_H = 110 - 150$ GeV)		Asymmetric Log-normal	
Scale	ggF: ^{+7.2} ZH: ^{+1.6} -1.5	VBF: $^{+0.2}_{-0.2}$ ttH: $^{+3.8}_{-9.3}$	WH: +0.2 -0.6	Asymmetric Log-normal
PDF+ α_s	ggF: ^{+7.5} -6.9 ZH: ±3.6	VBF: +2.6 -2.7 ttH: ±7.8	WH: ±3.5	Asymmetric Log-normal
Theory cross section on ggF	Tight high-mass two-jet: ±48 Loose high-mass two-jet: ±28 Low-mass two-jet: ±30		±48 ±28 ±30	Log-normal

81

Higgs to photons

Energy scale key to mass measurement Important when combining many categories Derived from tuned MC + dielectron and Zγ data

Calorimeter response stable at 0.1% level wrt. time/pile-up

Overall scale uncertainty ~0.6% Driven by material modelling and errors on in-situ calibration

Higgs to photons

Mass resolution critical to sensitivity

Photon energy resolution Vertex identification - photon pointing Additional constant-term smearing in MC derived from Z studies with electrons:

1% central, 1.5-2.5% forward

Uncertainty on photon resolution 14-23%

HIGGS TO TAUS

Backup slides

No evidence for a signal as yet – though some small excess of events Compatible with SM so far...

Higgs to b quarks

Cross check – search for diboson signal Observed with $\sim 4\sigma$

One semi-leptonic top-decay + many jets signature: 1 lepton + high missing ET + >=4 jets

Pre-Fit

Events categorized according to multiplicity of jets and b-tagged jets

Background dominated categories provide strong constraints on uncertainties

Post-Fit

Table 4: A summary of the size of the components of the systematic uncertainty on the total estimated background after all cuts for the three channels of the $\sqrt{s} = 8$ TeV analysis. The uncertainties are shown as a percentage and grouped together into broad categories and are averaged over all p_T^V bins in each category. The total error is worked out by adding the individual components together in quadrature in each p_T^V bin and then averaging.

Uncertainty [%]	0 lepton	1 lepton	2 leptons
<i>b</i> -tagging	6.5	6.0	6.9
<i>c</i> -tagging	7.3	6.4	3.6
light tagging	2.1	2.2	2.8
Jet/Pile-up/E ^{miss}	20	7.0	5.4
Lepton	0.0	2.1	1.8
Top modelling	2.7	4.1	0.5
W modelling	1.8	5.4	0.0
Z modelling	2.8	0.1	4.7
Diboson	0.8	0.3	0.5
Multijet	0.6	2.6	0.0
Luminosity	3.6	3.6	3.6
Statistical	8.3	3.6	6.6
Total	25	15	14

Table 5: A summary of the size of the components of the systematic uncertainty on the signal with $m_H = 125$ GeV for the three channels of the $\sqrt{s} = 8$ TeV analysis. The dominant signal is shown for the 1 lepton and 2 lepton channels, while for the 0 lepton channel both ZH and WH signals are listed. The uncertainties are shown as a percentage, grouped together into broad categories and are calculated by summing in quadrature within each p_T^V bin and then averaging over all p_T^V bins in a channel.

Uncertainty [%]	0 lepton		1 lepton	2 leptons
	ZH	WH	WH	ZH
<i>b</i> -tagging	8.9	9.0	8.8	8.6
Jet/Pile-up/E ^{miss}	19	25	6.7	4.2
Lepton	0.0	0.0	2.1	1.8
$H \rightarrow bb \text{ BR}$	3.3	3.3	3.3	3.3
$VH p_T$ -dependence	5.3	8.1	7.6	5.0
VH theory PDF	3.5	3.5	3.5	3.5
VH theory scale	1.6	0.4	0.4	1.6
Statistical	4.9	18	4.1	2.6
Luminosity	3.6	3.6	3.6	3.6
Total	24	34	16	13

Higgs Signal Strength ATLAS-CONF-2013-14 ATLAS-CONF-2013-34

