Putting Bell inequalities to work

Dan Browne - AMOPP Group, UCL

joint work with: Janet Anders, Earl Campbell (former post-docs) and Matty Hoban (former PhD student)

• Understanding **Bell inequalities** from the point of view of **computation**.

• Understanding **Bell inequalities** from the point of view of **computation**.

• Understanding **Bell inequalities** from the point of view of **computation**.

Correlations

Image taken from www.businessweek.com

Correlations

Correlations

Alice

Bob

Alice

Message bit

Alice

Message bit

Secret random correlated bit

Bob

r

 \mathcal{M}

Alice

Message bit

Secret random correlated bit

Secret random correlated bit

Bob

r

 \mathcal{M}

Alice

Message bit

Secret random correlated bit

Secret random correlated bit

Bob

r

 \mathcal{M}

Alice

Message bit

Secret random correlated bit

Secret random correlated bit

Bob

 $m \oplus r \oplus r = m$

- John Bell (1960s) (paraphrased):
 - Measurements on space-like separated quantum systems can exhibit correlations impossible to achieve in classical physics (or any local realistic theory).

Local realistic theories (Local hidden variable models)

Local

An observed **event** (e.g. the outcome of a measurement) can only be **influenced** by events in its **past light cone**.

Local realistic theories (Local hidden variable models)

Local

An observed **event** (e.g. the outcome of a measurement) can only be **influenced** by events in its **past light cone**.

Realistic

Measurements reveal **pre-existing** properties - i.e. any apparent **randomness** is due to our **ignorance** only.

Local realistic theories (Local hidden variable models)

Local

An observed **event** (e.g. the outcome of a measurement) can only be **influenced** by events in its **past light cone**.

Realistic

Measurements reveal **pre-existing** properties - i.e. any apparent **randomness** is due to our **ignorance** only.

Relativistic classical physics is local realistic.

The CHSH Inequality

The ''Textbook'' Bell Inequality

2 settings (0 or 1)

 E_{jk} Expectation value of product of outcomes Local realistic theories satisfy the **CHSH Bell Inequality** $|E_{00} + E_{10} + E_{01} - E_{11}| \leq 2$ \smile \checkmark iolated by QM

Two readings of Bell's theorem

- Standard interpretation
 - Quantum Mechanics is not a local realistic theory.

Two readings of Bell's theorem

- Standard interpretation
 - Quantum Mechanics is not a local realistic theory.
- Quantum Information interpretation
 - Correlations in Quantum Mechanics achieve something **impossible** in classical physics.
 - What can we **use** this for?

Bob

Boolean functions

A computation

Boolean functions

A computation

A Boolean function

Boolean Functions

a	b	a b
0	0	0
0		0
	0	0

a	b	a⊕b
0	0	0
0		I
I	0	I
		0

а	a⊕l
0	I
	0

Boolean Functions

Any Boolean function can:

be composed as a network of **AND**, **XOR**, and **NOT**. be written as a **polynomial** (mod 2).

AND, XOR, and NOT are a universal set of logic gates. XOR, and NOT alone do not form a universal set.

Boolean Functions

E.g.

AND, XOR, and NOT are a universal set of logic gates. XOR, and NOT alone do not form a universal set.

Circuits of XOR and NOT alone can only express linear functions.

$$f(a, b, c, d) = a \oplus b \oplus c \oplus 1$$

Tvery important for the rest of this talk!
Talk Outline


```
What Boolean functions are achievable
Alice
                                                                  Bob
                in principle given classical physics?
                  Space-like separated parties.
                                                           b \in \{0, 1\}
 a \in \{0, 1\}
                  No advance warning of input.
                  Output is A \oplus B.
                  Alice and Bob may share correlated
                  bits, pre-agree an "algorithm".
                                                           B \in \{0, 1\}
A \in \{0, 1\}
                            Ideas?
```


Example

From correlation to computation Alice Bob Can **75**% be beaten? No - we can show that every possible $b \in \{0, 1\}$ $a \in \{0, 1\}$ **strategy** (with or without correlations) based on **local realistic** physics satisfies: $Prob(A \oplus B = ab) \le 0.75$ A Bell ínequality $B \in \{0, 1\}$ $A \in \{0, 1\}$

Talk Outline

Qubits

The prototypical qubit - the spin 1/2

$$|0\rangle = |\uparrow\rangle \qquad |1\rangle = |\downarrow\rangle$$

Qubit measurements

• Key observables: Pauli operators (σx , σy , σz)

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \qquad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

• E.g. Stern-Gerlach measurements

Many qubits

Superposition principle + multiple systems
 → entangled states:

$$|\psi
angle = rac{1}{2}(|0
angle - |1
angle)(|0
angle - |1
angle)$$
 Not entangled

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle) \qquad \text{Entangled}$$

Many qubits

Superposition principle + multiple systems

→ entangled states:

$$|\psi\rangle = \frac{1}{2}(|0\rangle - |1\rangle)(|0\rangle - |1\rangle)$$
 Not entangled

$$|\psi
angle = rac{1}{\sqrt{2}}(|01
angle - |10
angle)$$
 Entangled
 \int
Can violate Bell inequalities...

Violating the Bell Inequality

Are quantum correlations useful for computation?

The results so far...

• For all local realistic theories: equivalent $Prob(A\oplus B=ab)\leq 0.75 \quad \text{to orig. Bell} \\ \text{ineq.}$

• For quantum mechanics, we demonstrated

$$Prob(A \oplus B = ab) = \frac{2 + \sqrt{2}}{4} \approx 0.85$$
 provable upper bound

Talk Outline

Two to Three

Two to Three

GHZ State:

 $(1/\sqrt{2})(|000\rangle + |111\rangle)$

Two to Three

• In this three party case, we achieve a clear separation.

Classical correlations: Linear functions

Correlations provide no advantage at all.

Quantum correlations: All functions deterministically

Since AND, XOR, NOT form a universal set.

In quantum mechanics, correlations are a computational resource.

Classical correlations: Linear functions

Same arguments apply.

Quantum correlations?

Three to Many?

Is there anything beyond all Boolean functions?

Three to Many?

Is there anything beyond all Boolean functions?

Universal quantum computing.

Quantum computing in a nut-shell

In a quantum computer, **coherent unitary** logic gates act on **quantum bits**.

Quantum computing in a nut-shell

In a quantum computer, **coherent unitary** logic gates act on **quantum bits**.

Quantum computing in a nut-shell

In a quantum computer, **coherent unitary** logic gates act on **quantum bits**.

For certain problems (e.g. factoring, simulating quantum physics) an **exponential speedup** over best classical algorithms.

A very special quantum state

"Cluster state"

"Recipe"

forthe

state

state

Lattice of qubits

A "many-body singlet"

 $1 \quad 0$

0

0

0

0

0

Application of an entangling two-qubit controlled-Z gate

Qubits prepared in

 $|+\rangle = (|0\rangle + |1\rangle)/\sqrt{2}$

Measurement-based quantum computing

- With single-qubit measurements
 - on a (large enough) cluster state
 - (assisted with XOR gates)
- one can implement **any** quantum computation.

Quantum correlations are a resource for quantum computation.

Bell inequalities tell us **no** classical analogue of this effect exists.

Summary

Classical correlations: No computational utility

Quantum correlations: A rich computational resource

Summary

Classical correlations: No computational utility

Quantum correlations: A rich computational resource

• At the heart of Bell's theorem is Computation.

References

• Bell's Theorem and generalisations

- J.S Bell, Physics 1, 195 (1964).
- D. M. Greenberger, M. Horne, A. Zeilinger, 'Bell's Theorem, Quantum Theory, and Conceptions of the Universe', 69-72 (1989).

Measurement-based quantum computation

- R. Raussendorf, and H. J. Briegel, Phys. Rev. Lett. 86, 5188-5191 (2001)
- H. J. Briegel, D. E. Browne, W. Dur, R. Raussendorf, M. Van den Nest, Nature Physics 5 1, 19-26 (2009).

Correlations and Computation

- J.Anders, D.E.Browne, Phys.Rev.Lett.102,050502(2009).
- M.J. Hoban and D.E. Browne, Phys. Rev. Lett. 107, 120402 (2011)
- M.J. Hoban, J. J. Wallman and D.E. Browne, Phys. Rev. A 84, 062107 (2011)

