
Putting Bell inequalities 
to work

Dan Browne - AMOPP Group, UCL

joint work with: Janet Anders, Earl Campbell (former post-docs) 
and Matty Hoban (former PhD student)



Talk Outline

• Understanding Bell inequalities from the 
point of view of computation.



Talk Outline

• Understanding Bell inequalities from the 
point of view of computation.



Talk Outline

• Understanding Bell inequalities from the 
point of view of computation.



Talk Outline

Correlations

Correlations and Computation

From Classical Correlations

To Quantum Correlations



Talk Outline

Correlations

Correlations and Computation

From Classical Correlations

To Quantum Correlations



Correlations

Image taken from www.businessweek.com

http://www.businessweek.com
http://www.businessweek.com


Correlations



Correlations
Alice Bob



Correlations
Alice Bob

Correlated



Correlations as a resource
Alice Bob

The only provably unbreakable crypto-system.

Message bit

The Vernam cypher (or one-time pad)

m



Correlations as a resource
Alice Bob

The only provably unbreakable crypto-system.

Message bit

The Vernam cypher (or one-time pad)

m

Secret random 
correlated bit

r

Secret random 
correlated bit

r



Correlations as a resource
Alice Bob

The only provably unbreakable crypto-system.

Message bit

The Vernam cypher (or one-time pad)

m

Secret random 
correlated bit

r

Secret random 
correlated bit

r

m� r



Correlations as a resource
Alice Bob

The only provably unbreakable crypto-system.

Message bit

The Vernam cypher (or one-time pad)

m

Secret random 
correlated bit

r

Secret random 
correlated bit

r

m� r

Notation: Addition Modulo 2

0� 0 = 0

0� 1 = 1

1� 1 = 0



Correlations as a resource
Alice Bob

The only provably unbreakable crypto-system.

Message bit

The Vernam cypher (or one-time pad)

m

Secret random 
correlated bit

r

Secret random 
correlated bit

r

m� r
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The only provably unbreakable crypto-system.
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Bell’s theorem

• John Bell (1960s) (paraphrased):

• Measurements on space-like separated quantum 
systems can exhibit correlations impossible to achieve 
in classical physics (or any local realistic theory).
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Bell’s theorem
Local realistic theories (Local hidden variable models)

Local
An observed event (e.g. the outcome of a measurement) 
can only be influenced by events in its past light cone.

Realistic
Measurements reveal pre-existing properties - i.e. any 
apparent randomness is due to our ignorance only.

Relativistic classical physics is local realistic.



The CHSH Inequality

|E00 + E10 + E01 � E11|  2

The “Textbook” Bell Inequality

2 settings (0 or 1) 2 settings (0 or1)

space-like 
separated

measurements

Ejk Expectation value of product of outcomes

+1 or -1 +1 or -1

Local realistic theories satisfy the CHSH Bell Inequality

Violated by QM
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Two readings of Bell’s theorem

• Standard interpretation 

•Quantum Mechanics is not a local realistic 
theory.

• Quantum Information interpretation

• Correlations in Quantum Mechanics 
achieve something impossible in classical 
physics.

•What can we use this for?
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What correlations are possible in 
principle in:

Classical (local realistic) Physics
Quantum Physics

From correlations to computations

Alice Bob

a 2 {0, 1} b 2 {0, 1}

A 2 {+1,�1} B 2 {+1,�1}

computations

B 2 {0, 1}A 2 {0, 1}

Our approach...
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bits in bits out

A Boolean function

bits in 1 bit out



Boolean Functions

a
b ab a� b a� 1

XOR
a
b

a

NOTAND

a b a b

0 0 0

0 1 0

1 0 0

1 1 1

a b a⊕b

0 0 0

0 1 1

1 0 1

1 1 0

a a⊕1

0 1

1 0



Boolean Functions

a
b ab a� b a� 1

XOR
a
b

a

NOTAND

AND

AND

XOR

a
b
c
d (ab)c� d

Any Boolean function can:
be composed as a network of AND, XOR, and NOT.
be written as a polynomial (mod 2).
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Boolean Functions

a
b ab a� b a� 1

XOR
a
b

a

NOTAND

AND, XOR, and NOT are a universal set of logic gates.

XOR, and NOT alone do not form a universal set.

Circuits of XOR and NOT alone can only express 
linear functions.
E.g.

↑ Very important for the rest of this talk!

f(a, b, c, d) = a� b� c� 1
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Eh?!Alice Bob

a 2 {0, 1} b 2 {0, 1}

B 2 {0, 1}A 2 {0, 1}

How is this remotely like a 
computation?

Two output bits

�
Add an XOR gate, and consider A⊕B to be the output of 

the computation. 
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Alice Bob

a 2 {0, 1} b 2 {0, 1}

B 2 {0, 1}A 2 {0, 1}

Space-like separated parties.

No advance warning of input.

Output is A⊕B.

Alice and Bob may share correlated 
bits, pre-agree an “algorithm”.

�

What Boolean functions are achievable 
in principle given classical physics?

Ideas?
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From correlation to computation

Alice Bob

a 2 {0, 1} b 2 {0, 1}

B 2 {0, 1}A 2 {0, 1}

�

Yes - all linear functions (XOR, 
NOT, etc.) can be achieved.

No, we don’t. 
What about AND?

Do we need to use the random bits?
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�

AND is impossible to achieve.

We can prove that: 

With this set up, in any locally realistic 
theory, the linear functions are the only 
Boolean functions deterministically 
achievable.

contains the Bell inequalities
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From correlation to computation

Alice Bob

a 2 {0, 1} b 2 {0, 1}

B 2 {0, 1}A 2 {0, 1}

�

Let’s allow it to sometimes fail.

Assume a and b are fair coins.
i.e. 50% chance 0 or 1.

New task:

Find the highest probability (on average) 
to achieve AND, i.e. that A⊕B=ab.

AND is impossible to achieve deterministically.



From correlation to computation

Alice Bob

a 2 {0, 1} b 2 {0, 1}

B 2 {0, 1}A 2 {0, 1}

�

Example

The simplest strategy - “always output 
0” will be correct on average 75% of the 
time.

a b a b 0
0 0 0 0
0 1 0 0
1 0 0 0
1 1 1 0

AND 0



From correlation to computation

Alice Bob

a 2 {0, 1} b 2 {0, 1}

B 2 {0, 1}A 2 {0, 1}

�

No - we can show that every possible 
strategy (with or without correlations)
based on local realistic physics satisfies:

Prob(A�B = ab)  0.75

A Bell inequality

Can 75% be beaten?



From correlation to computation

Alice Bob

a 2 {0, 1} b 2 {0, 1}

B 2 {0, 1}A 2 {0, 1}

�

Why 75%?

Prob(A�B = ab)  0.75

Closest linear function

a b a b 0
0 0 0 0
0 1 0 0
1 0 0 0
1 1 1 0
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Qubits

bits qubits

101101 . . . �|101101 . . .⇥ + ⇥|001001 . . .⇥ + · · ·

Complex weighted superposition 

The prototypical qubit - the spin 1/2

|0i = | "i |1i = | #i



Qubit measurements

• Key observables: Pauli operators (σx, σy, σz)

• E.g. Stern-Gerlach measurements

X =
�

0 1
1 0

⇥
Y =

�
0 �i
i 0

⇥
Z =

�
1 0
0 �1

⇥



Many qubits

• Superposition principle + multiple systems
     →  entangled states:

| i = 1p
2
(|01i � |10i)

| i = 1
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Entangled

Not entangled



Many qubits

• Superposition principle + multiple systems
     →  entangled states:

| i = 1p
2
(|01i � |10i)

| i = 1

2
(|0i � |1i)(|0i � |1i)

Entangled

Not entangled

Can violate Bell inequalities...
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How to violate a Bell Inequality
Alice Bob

a 2 {0, 1} b 2 {0, 1}

B 2 {0, 1}A 2 {0, 1}

�

Alice and Bob share a singlet state:

| i = 1p
2
(|01i � |10i)

Alice’s input:         Alice measures:
a = 0
a = 1

X
Z

Convert +1/-1 to 0/1. Convert +1/-1 to 0/1.

Bob’s input:          Bob measures:

(�X � Z)/
p
2

(Z �X)/
p
2

b = 0
b = 1
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Violating the Bell Inequality
Alice Bob

a 2 {0, 1} b 2 {0, 1}

B 2 {0, 1}A 2 {0, 1}

�

Calculating the probability, we find..

Convert +1/-1 to 0/1. Convert +1/-1 to 0/1.

Prob(A�B = ab) =
2 +

p
2

4
⇡ 0.85

This violates the Bell inequality 
bound of 0.75.



Are quantum correlations useful for computation?

• For all local realistic theories:

• For quantum mechanics, we demonstrated

Prob(A�B = ab) =
2 +

p
2

4
⇡ 0.85

Prob(A�B = ab)  0.75

provable 
upper bound

equivalent
to orig. Bell 

ineq.

The results so far...
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From two to many...
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Two to Three 

a 2 {0, 1} b 2 {0, 1}

B 2 {0, 1}A 2 {0, 1}

�
C 2 {0, 1}

a� b
The same proofs go through for 

n-party generalisations.

The only deterministic computations 
are linear functions.

Non-linear functions give us Bell 
inequalities.
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Two to Three 

a 2 {0, 1} b 2 {0, 1}

B 2 {0, 1}A 2 {0, 1}

�
C 2 {0, 1}

a� b

GHZ State: (1/
p
2)(|000i+ |111i)

Measurements: X Y0: 1:

Output always satisfies: A�B � C = ab

An AND
with 100% 
probability!



Two to Three 
• In this three party case, we achieve a clear separation.

Classical correlations: Linear functions

Quantum correlations: All functions deterministically

Correlations provide no advantage at all.

• In quantum mechanics, correlations are a 
computational resource.

Since AND, XOR, NOT form a universal set.
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Three to Many?

�
Classical correlations: Linear functions

Same arguments apply.

Quantum correlations?
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Three to Many?

Is there anything beyond all Boolean functions?

Universal quantum computing.
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Quantum computing in a nut-shell

In a quantum computer, coherent unitary logic gates act on 
quantum bits.

For certain problems (e.g. factoring, simulating quantum physics) 
an exponential speedup over best classical algorithms.

Superposition

Entanglement
Quantum measurement



A very special quantum state

“Cluster state”

Qubits prepared in
state 

Lattice of qubits

|+i = (|0i+ |1i)/
p

2

Application of an 
entangling two-qubit
controlled-Z gate

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 �1

3

775

“Recipe” 
for the 
state A “many-body singlet”



Measurement-based quantum computing

•With single-qubit measurements 

•on a (large enough) cluster state 

•(assisted with XOR gates) 

•one can implement any quantum 
computation.

Quantum correlations are a 
resource for quantum 
computation.

Bell inequalities tell us no classical analogue of this effect exists.
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Summary
Classical correlations: No computational utility

Quantum correlations: A rich computational resource

• At the heart of Bell’s theorem is Computation.
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