

Searches for **Extra Dimensions** using the ATLAS detector

Dr Tracey Berry

Royal HollowayUniversity of London

Overview

•Introduction:

- •Motivation for Extra Dimensional Model Searches
- •Extra Dimensional Models
- •ATLAS & LHC
- Search Signatures/Channels used at ATLAS:
	- •Overview of ATLAS Searches & Results
- •Summary and Outlook

Further information can be found at:

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults?redirectedfrom=Atlas.ExoticsPublicResults

The Standard Model

The SM : particles + forces

Motivation for searching for something beyond the SM….

Forces in Nature

Gravity is very weak! \rightarrow Hierarchy Problem

$$
\rm M_{\rm EW}\,(10^3\;GeV) << M_{\rm Planck}\,(10^{19}\,GeV)?
$$

Table from Cigdem Issever, Oxford

ED Model Motivations

^MEW (1 TeV) << MPlanck (10¹⁹GeV)? In the late 90's Large Extra Dimensions (LED) were proposed as a solution to the hierarchy problem

Since then, new Extra Dimensional models have been developed and been used to solve/address other problems:Dark Matter, Dark Energy, SUSY Breaking, etc

These models can be/have been experimentally tested at high energy colliders

If ED exist, why haven't we observed them?

The "extra" dimensions could be hidden to us:

τ E.g. To a tightrope walker, the tightrope is one-dimensional: he/she can only move forward or backward

• But an ant can go around the tightrope as well …

particles could fit into them (so we need high energies to probe them)) • The "extra" dimensions may be too small to be detectable at energies
less than \sim 10¹⁹ GeV (E.g. they are small that only extremely energetic less than $\sim 10^{19}$ GeV (E.g. they are small that only extremely energetic

Or only some kinds of matter are able to move in the extra dimensions, and we are confined to our world.

KK towers/particles

When particles go into the extra dimensions….

Extra Dimensional Models

Experimental Signatures of ED M Covered in this talk

- Large Extra Dimensions (ADD)
	- KK Graviton Direct Production \rightarrow Missing E
Single jets/Single photons + missing ET $_{\sf T}$ signature Single jets/Single photons + missing ET
	- KK Graviton Exchange → Drell-Yan Di-lepton continuum modifications
- Randall-Sundrum Model
	- KK Graviton →TeV resonances
Di-lenton and di-photon res Di-lepton and di-photon resonancestt-bar resonances
- •UED Model
	- Di-photon + Met

LHC: proton – proton collisions High center of mass energy \sqrt{s} = 7 TeV -> 8 -> 14 TeV

LHC data

Of 48.87 pb⁻¹ delivered: 40% in the last weekover 60% in the last month

equivalent of 2010 dataset: collected in one day in 2011 running

ATLAS

Largest volume particle detector ever constructed!

Overall diameter25 mlong 46 m**Building 40 at CERN** 6 storeys highATLAS is half the size of Notre Dame CathedralSeminar, OSE, April 2012 Tracey Berry 13, Indonesia Propiles and American Strategies and American Strategies and

Large general-purpose particle physics detector
A Toroidal LHC AnnaratuS

ATLAS

A Toroidal LHC ApparatuS

Detector subsystems are designed to measure:energy and momentum of γ ,e, μ , jets, missing E_T up to a few TeV

Magnets: solenoid (Inner Detector) 2T, air-core toroids (Muon Spectrometer) ~0.5T

ATLAS Exotics Searches

ATLAS Exotics Searches

UED

Universal Extra Dimensions

Standard/Minimal UED

- □ All particles can travel into the bulk, so each SM particle has an infinite tower
of KK partners of KK partners
- \square Spin of the KK particles is the same as their SM partners
 \square In minimal UED: 1 ED compactified in an orbifold (S1/72)
- □ In minimal UED: 1 ED compactified in an orbifold (S1/Z2) of size R
I KK parity conservation → the lightest massive KK particle (LK
	- □ KK parity conservation → the lightest massive KK particle (LKP) is stable
(dark matter candidate) (dark matter candidate).
	- □ Level one KK states must be pair produced
- \Box Mass degeneration except if radiative corrections included α .

The model parameters: compactificaton radius R, cut-off scale Λ , m_h

Bounds to the compactification scale:

 $\mathcal{L}_{\mathcal{A}}$ Precision E \mathbf{W} data measurements set a lower bound of $\mathsf{R}^\text{-1} > 300$ GeV

Phys. Rev. D64, 035002 (2001) Appelquist, Cheung, Dobrescu

 \blacksquare **DARK MATTER** constraints imply that 600 $<$ R $^{\text{-1}}$ $<$ 1050 GeV Phys. Rev. D64, 035002 (2001) Appelquist, (
 DARK MATTER constrain
 $600 < R^{-1} <$ Servant , Tait, Nucl. Phys. B650,391 (2003)

Universal Extra DimensionsDiphoton + E TMiss

 10

 $10²$

 10

 10^{-7}

Events / 5 GeV

Data 2010 $N_s = 7$ TeV)

GGM $m_z = 600$ GeV, $m_e = 300 \text{ GeV}$

.... UED $1/R = 900$ GeV

W→ev+jets, W→evγ, tt->ev+X⁻

ATIAS $Ldt = 36 pb$

OCD

• Effective theory of one TeV⁻¹ size UED valid at $>1/R$ (R = ED size)

 –SM particles in bulk[→]KK excitations –Mass degeneracy of KK excitations broken by radiative corrections

-Lowest KK particle γ^* decays to γ +G

 \bullet Expect excess of UED events at high E $_{\rm T}$ –No events observed in $\mathsf{E}_{\mathsf{T}}^{\mathsf{Miss}\bm{>}}$ 125GeV Miss : –Background events expected 0.10 ± 0.04 (stat) ±0.05 (syst)

•UL @ 95% CL on σ <0.18-0.23pb for 1/R=700-1200 GeV in UED model •Exclude @95% C.L. 1/R<961 GeV

arXiv:1107.05661, submitted to EPJC

Seminar, UCL, April 2012 Tracey Berry

Model

Monojet: (ADD)Diphotons (RS+ ADD)

Arkani-Hamed, **D**imopoulos, **D**vali, Phys Lett B429 (98), Nuc.Phys.B544(1999)

(Many) Large flat Extra-Dimensions (LED),

could be as large as a few µmthe maximum total number of dimensions is 3(our) + 6(extra)=9

G can propagate in ED

SM particles restricted to 3D brane

The fundamental scale is not planckian: $M_{D} = M_{Pl(4+\delta)} \sim TeV$

Model parameters are: δ = number of ED $M_{\text{Pl}}(4+\delta)$ = Planck mass in the $4+\delta$ dimensions $M_{\text{Pl}}^2 \sim R \delta M_{\text{Pl}(4+\delta)}^2$ ^(2+δ) For M_{Pl} $\sim 10^{19}$ GeV and M_{Pl(4+δ)} \sim M_{EW} \rightarrow <mark>R \sim 10^{32/δ} x10⁻¹⁷ cm</mark>

 \overline{r} aravity over solar distances have not been \overline{r} \triangleright δ =1 \rightarrow R \sim 10¹³ cm, ruled out because deviations from Newtonian
gravity over solar distances have not been observed gravity over solar distances have not been observed

 $\geq \delta = 2 \rightarrow R \sim 1$ mm, not likely because of cosmological arguments:

In particular graviton emission from Supernova 1987 a* implies M $_\mathrm{D}$ >50 TeV Closest allowed M_{PI(4+n)} value for δ =2 is ~30 TeV, out of reach at LHC

Can detect at collider detectors via:

∻graviton emission

∜Or graviton exchange

>LEP & Tevatron limits is M_{PI(4+}
≥&>6 difficult to probe at LHC $_{\delta)}$ \sim > 1TeV \geq δ>6 difficult to probe at LHC since cross-sections are very low

ADD Collider Signatures

jet,V

f,V

f,V

G

Real Graviton emission in association with a vector-boson

Virtual Graviton exchange

Seminar, UCL, April 2012 Tracey Berry

Model

ADD: Monojet Search a single jet plus missing ET

- П ADD: Graviton Emission: Produce jet + G
- П G disappears into the extra dimension
- **Signature: single (high pT) jet and missing** $E_T = \frac{5}{5}$ П

Missing ETtrigger •Signal region ("HighPt") $-p_T$ ^{j1}> 250 GeV, missing E_T> 220 GeV – p_T j2< 60 GeV, Δφ(j2, missing E_T) > 0.5 –No reasonable e's, µ's

[ad]

⋖

Good Agreement between data and background prediction: 965 events: 1010 ± 37 (stat) \pm 65 (syst)

2000

1500

2500

•Model-independent

ADD signal samples (Pythia): 95% CL on fiducuial $\sigma = 0.13$ pb

 limit on σ*Acceptance $@ 95\% CL = 0.11 pb$ Using Acceptance from

3500

3000

L.Vacavant, I.Hinchcliffe, ATLAS-PHYS 2000-016

29

ADD Parameters: jet+G Emission

L.Vacavant, I.Hinchcliffe, ATLAS-PHYS 2000-016

J. Phys., G 27 (2001) 1839-50

To characterise the model need to measure M_D and $δ$

Measuring σ (pp \rightarrow jet+G^{KK})gives ambiguous results

J. Weng et al. CMS NOTE 2006/129

Real graviton production

pp→γ+GKK

 \Box γG ⇒ high-p_⊤ photon + high
missing E_⊤

At low p_T the bkgd, particularly $\frac{1}{2}$ irreducible Ζγ → ννγ is too large⇒ require p_T>400 GeV

- Main Bkgd: ^Zγ → ννγ, Also W→ e(µ,τ)ν, Wγ→ ^eν, $γ$ +jets, QCD, di-γ, Z⁰+jets

Integrated Lum for a 5σ significance discovery

ADD Discovery Limit: γ+G Emission

ATLAS

This gets worse as δ increases

• Better limits from the jet+G emission which has a higher production rate

This signature could be used as confirmation after the discovery in the jet channels

L.Vacavant, I.HinchcliffeATLAS-PHYS 2000-016

Seminar, UCL, April 2012 Tracey Berry J. Phys., G 27 (2001) 1839-50 32

Virtual Graviton Emission

Virtual Graviton exchange

Signature: deviations in σ and asymmetries of SM processes e.g. qq \rightarrow l⁺l⁻, γ γ & new processes e.g. gg \rightarrow l⁺l⁻

Analysis Procedure & Event SelectionRS G*->γγ

Select events with two diphotons

Search for excess above SM expectations in high invariant mass region

Main Backgrounds

L. **Irreducible Background SM** γγ **production**

•simulated with pythia (v6.424) and MRST2007LOMOD PDFs •pythia events reweighted as a function of m_{γ} to the differential cross section predicted by the NLO calculation of diphox (v 1.3.2).

\blacksquare **Reducible Background**

- \bullet γ + (misidentified) jet
- jet + jet

Shape determined using data-driven background enriched control samples & extrapolated to high mass

 \blacksquare **Total Background**: normalised to data 140 Gev $<$ m $\gamma\gamma$ $<$ 400 GeV

Diphoton Distributions

ADD Limits

- L. Counting experiment (BAT):
- $\overline{}$ Set limit on number of signal events above a given mass threshold
- **Translate into a limit on Acc*eff*xsec** $\sigma'_{tot} = \sigma'_{SM} + \eta_G \sigma'_{int} + \eta_G^2 \sigma'_{tot}$ \blacksquare
- $\overline{}$ Use theoretical dependence between Acc*eff*xsec and η_G
- П **•** Optimized Search Region m_{γγ} > 1100 GeV

Limits

- **Service Service Observed (expected) 95 % CL upper limit on** σ **= 2.53 (1.95) fb**
- **Service Service** Translated into 95 % CL limits on the parameter on η and $M_S: \eta = \frac{\lambda}{M_A^4}$

C ADD Discovery Limit: G Exchange

Virtual graviton production

• Two opposite sign muons in the final state with $M\mu\mu > 1$ TeV

pp→G^{кк}→µµ

•Irreducible background from Drell-Yan, also ZZ, WW, WW, tt (suppressed after selection cuts)• PYTHIA with ISR/FSR + CTEQ6L,
 $10 + K = 1.38$

 $10 + K = 1.38$

Belotelov et al.,V. Kabachenko et al. CMS NOTE 2006/076, CMS PTDR 200

Can use LHC to search for ADD ED with δ<6

 $\delta \leq 2$ ruled out

 $\textsf{M}_{\textsf{D}}$ >2.1 – 1.3TeV (n=2, 7) from Tevatron

Photon+Met CMS

 Discovery above 3.5 TeV not possible in this channel

 $M_{\text{D}}= 1 - 1.5$ TeV for 1 fb⁻¹ 2 - 2.5 TeV for 10 fb-1 $\frac{3 - 3.5 \text{ TeV}}{2}$ CMS Exchange limits:

1 fb⁻¹: 3.9-5.5 TeV for $n=6...3$ 10 fb⁻¹: 4.8-7.2 TeV for $n=6...3$ 100 fb⁻¹: 5.7-8.3 TeV for n=6..3 300 fb⁻¹: 5.9-8.8 TeV for $n=6...3$

Jet+Met ATLAS

ATLAS Exchange Limits

Randall Sundrum ED

RS Gravitons (G)

•5-D space-time bound by two 3+1D branes with SM particles localized on one and gravity on the other

•Only G propagate in bulk resulting in massive spin-2 Kaluza-Klein (KK) excitations

• k is space-time curvature in ED

Signature for RS Model

 10^{-4}

 10^{-8} $\begin{array}{c} \text{LHC} \\ \text{1500 C} \end{array}$

LHC

1500 GeV G_{KK}

 10^{-6}

d σ /dM $~10^{-2}$

(pb/GeV)

resonance

 $K/M_{\rm pl}$

0.5

 $0.1\,$

0.05

01

1

N^{TN}PI⁽Generations can be

 M_u (GeV)

Signature: Narrow, high-mass resonance states in dilepton/dijet/diboson channels

The model can be parameterised in terms of the mass of the lightest excitation (m_G) and the coupling k/M_{Pl}

Model parameters:

- • Gravity Scale: 1st graviton excitation mass: $\mathsf{m}_{1}\!\!\!\rightarrow\!\!\mathsf{position}$ Λ_{π} = m₁M_{pl}/kx₁, & m_n=kx_nekrc π (J₁(x_n)=0) **Resonance** Λ_{π} = M_{pl}e^{-kR}c^π
- •Coupling constant: $c = k/M_{Pl}$ $\Gamma_1 = \rho m_1 x_1^2$ (k/M_{pl})² → width
ture. R = compactification radius $k =$ curvature, $R =$ compactification radius

Width of resonance is proportional to m_{G} and to $(\mathsf{k}/\mathsf{M}_{\mathsf{Pl}})^2$

 $\mathsf{ev}(V) \quad \mathsf{ev}(V) \quad \longrightarrow \mathsf{excited}$ individually on

and subsequent tower states

1000 3000 5000 10^{-10} 1000 3000 5000
1000 3000 M (GeV)

 $5 - 70.5$

Narrow intrinsic width if k/M_{Pl} <0.1 (k is space-time curvature in ED)

g

Signature: Narrow, high-mass resonance states in dilepton/dijet/diboson channels

 $q\overline{q}$, $gg \to G_{\scriptscriptstyle KK} \to e^+e^-$, $\mu^+\mu^-$, $\gamma\gamma$, jet + jet

RS Searches for Extra Dimensions

Dileptons (RS) Diphotons (RS+ ADD) ^gqqgKK/gs: tt-bar->l+jets(HT+ET ZZ resonance (RS)miss)(RS)

Analysis Procedure & Event Selection RS ED G*: Dileptons

Select events with two leptons of same flavor (ee, $\mu\mu$)

Search for excess above SM expectations in high invariant mass region

Analysis Procedure & Event Selection

Total signal acceptance for Z' (G^*) ->ee 71 % (72%) for a mass of 2 TeV Z' (G*) ->µµ 43 % (47 %)

Electron channel

- **•Trigger on single Medium** electron with E $_{\rm T}$ > 20 GeV
- -
	- •|η| < 2.47, exclude crack region
	- 1.37 < $|\eta|$ < 1.52
	- Medium Electron ID
	- Hit in first pixel layer ("Blayer")
	- isolation: Σ $E_{\mathcal{T}}$ (Δ R < 0.2) <7GeV
	- No opposite charge requirement
	- to minimize impact of mis-ID

Seminar, UCL, April 2012 Tracey Berry **Tracey Berry 17**

Highest mass ee event

Highest Mass µµ event

 M_{mm} =1.25 TeV

 P_T of 648 GeV (η, φ) = (-0.75, 0.49)

 P_T of 583 GeV (η, φ) =(-0.36, -2.60)

.

Main Backgrounds

Events

10 ϵ

 \bullet Data 201

•SM Z/γ Drell-Yan (irreducible, primary background)γ*/Z-> l+l-

•QCD (electron channel only)

•Top quark pair productionwhere tt goes to e+e-, mu+mu-

•SM W+jets (electron channel only) where the jets are misidentified as electrons

•Dibosons (WW, WZ, ZZ)

•Cosmic Rays (negligible contribution to **muon channel)**
Seminar, UCL, April 2012

ATLAS

Main Backgrounds

•SM Z/γ Drell-Yan (irreducible, primary background) •Produced using Pythia 6.421 with MRST2007 LO* •Interference with heavy resonances is small and ignored •NNLO K-factors generated using PHOZPR with MSTW2008•QCD (electron channel only) •estimated using "reversed electron identification" and others•Top quark pair production •Produced using MC@NLO 3.41 •Predicted to approximate-NNLO with 10% uncert.•SM W+jets (electron channel only) •Produced using Alpgen •cross-section rescaled to inclusive NNLO calculation of FEWZ•Dibosons (WW, WZ, ZZ) •Produced using Herwig 6.510 with MRST2007 LO* •NLO cross-sections calculated using MCFM

•Cosmic Rays (negligible contribution to muon channel)

Dilepton Distributions

Backgrounds are normalised to data in Z-peak region (70 - 110 GeV)

The bin width is constant in log(mll)

Dilepton Kinematics

Good agreement with background expectations

Dilepton Kinematics

New Physics?

No evidence of New Physics... so we set limits!

Seminar, UCL, April 2012 **Tracey Berry 55**

- $\overline{}$ Because normalize MC to data in Z peak region (70 $<$ m $_{\ell\ell}$ $<$ 110 GeV) luminosity and other mass independent systematics cancel between Z and Z'/G
- \blacksquare Uncertainties treated as correlated across all bins

Table 3: Summary of systematic uncertainties on the expected numbers of events at $m_{\ell^+\ell^-} = 2$ TeV. NA indicates that the uncertainty is not applicable, and "-" denotes a negligible entry.

Source	Dielectrons		Dimuons	
	Signal	Background	Signal	Background
Normalization	5%	NA	5%	NA
PDF/α_s /scale	NA	20%	NA	20%
Electroweak corrections	NA	4.5%	NA	4.5%
Efficiency			6%	6%
$W +$ jets and QCD background	NA	3.5%	NA	. .
Total	5%	21%	8%	21%

RS G*->Dilepton limits

•Set an upper limit on signal cross-section set at 95% C.L. •Bayesian technique using a template shape fit & a prior assumed to be flat in signal cross-section

RS ED: Diphotons

RS Gravitons (G)

- \blacksquare ■ m_{γγ} > 500 GeV
- **Limits obtained using same**
method as for dilenton sear $\overline{}$ method, as for dilepton search
- $\mathcal{L}_{\mathcal{A}}$ BR for G is twice that of $G \rightarrow \gamma \gamma$

RS G*->gg Present Limits

LHC RS Discovery Limits

Theoretical Constraints

• c>0.1 disfavoured as bulk curvature becomes
to large (larger than the 5-dim Planck scale) to large (larger than the 5-dim Planck scale)

 \bullet Theoretically preferred Λ_π <10TeV assures no
new hierarchy annears hetween may and A new hierarchy appears between m_{EW} and $\mathsf{\Lambda}_{\pi}$

LHC completely covers the region of interest

- L. ■ Signal RS $g_{KK} \rightarrow$ tt-bar :
- L. tt-bar →bW+bW-→bb-bar lνlν

No statistically significant excess above the SM expectation observed

UL @ 95% C.L. on σ.BR(resonance→tt-ba**r)** pairs as a function of the resonance pole mass

Lower mass limit of 1.025 TeV for ^a Kaluza Klein gluon resonance in the RS Model

RS G*→ZZ → IIII
Four Charged Lei

with Four Charged Leptons

- П Signal: Four Charged Leptons
- П 2 searches performed in this decay channel ZZ & H++H--
- \blacksquare Events with two identified $Z \rightarrow \ell + \ell -$ decays
- ▁ For $M_{\ell\ell\ell\ell}$ > 300 GeV: from SM expect $1.9^{+1.0}$ _{−0.1} (stat) ^{+0.8}_{−0.1} (syst) events
- П Observe: 3 events
- 95% C.L. Limit ^σ(production of ZZ from highmass sources) <0.9 pb in the fiducial region
- П For RS model: limits on $\sigma(pp\rightarrow G) \times BF(G\rightarrow ZZ)$ of 2.6-3.3 pb depending on the resonance mass
- П For a coupling of $k/M_{pl}=0.1$, the median expected 95% C.L. lower limit M_G > 575 GeV, equal to the observed limit

Seminar, UCL, April 2012 Tracey Berry **Fracey Berry ATLAS-CONF-2011-144** 63 ATLAS-CONF-2011-144

Conclusion/Outlook

- **-** LHC was working very well at beam energy 3.5 TeV
	- **Now taking data at beam energy 4 TeV**
- **ATLAS detector is efficiently collecting data**
	- No significant excesses yet observed
	- $\mathcal{L}_{\mathcal{A}}$ **-** Distributions so far consistent with SM expectations
- **We look forward to searching for New Physics** …. more exciting results from ATLAS to come:aiming for new results with full 5pb-1 for ICHEP and also first analyses with 8 TeV data

The End!

Thanks for listening!