Recent results and outlook for the NOvA neutrino experiment

Erika Catano-Mur **College of William & Mary**

UCL HEP Seminar, May 31, 2019

CHARTERED 1693

Neutrino oscillations

- In the SM, neutrinos are massless. We now have experimental evidence for oscillations of neutrinos caused by nonzero masses and neutrino mixing \rightarrow (new) physics beyond the Standard Model.
- Create in one flavor (v_{μ}) , but detect in another (v_{e})

Each flavor (e, μ) is a superposition of different masses (1, 2) \bullet

$$\begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix}$$

"Mixing Matrix"

Two-flavor oscillations

9 - 1

Appearance probability

$$P(\nu_{\mu} \to \nu_{e}) = \sin^{2}(2\theta) \sin^{2}\left(\frac{\Delta m^{2}L}{4E}\right)$$

Survival (disappearance) probability

$$P(\nu_{\mu} \to \nu_{\mu}) = 1 - P(\nu_{\mu} \to \nu_{e})$$

Experimentally, we care about:

- 1. The elements of the mixing matrix
- 2. Squared differences of neutrino masses

3. Distance/energy (L/E) ratio

Neutrino oscillations require that neutrinos have mass!

natrix no masses (Measurement) (Set by expt.)

Three-Flavor Oscillations

• The mixing matrix can be written in terms of 3 angles and 1 phase. Usually factorized into components directly related to the experiments:

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{+i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- The (12) sector: Solar and Reactor,
- The (23) sector: Atmospheric and Accelerator,
- The (13) sector: Reactor and Accelerator,

L/E 15,000 km/GeV L/E 500 km/GeV

L/E 500 km/GeV

 $\sin^2 \theta_{12} = 0.304 \pm 0.014$ $\sin^2 \theta_{13} = 0.0219 \pm 0.0012$ $\sin^2 \theta_{23} = 0.51 \pm 0.05$ $\delta_{CP} =$ $\delta_{CP} = ?$

$$\delta_{CP} \neq 0, \pi$$

 \rightarrow CP violatic
 \rightarrow diff. (anti)

$c_{ij} = \cos \theta_{ij}$ $s_{ij} = \sin \theta_{ij}$

(from global averages)

on neutrinos

Squared mass differences and hierarchy

Neutrino oscillation experiments can access the mass differences squared ${\color{black}\bullet}$

 $\Delta m_{21}^2 = (7.53 \pm 0.18) \times 10^{-5} \text{ eV}^2 \quad |\Delta m_{32}^2| = (2.44 \pm 0.06) \times 10^{-3} \text{ eV}^2$

- By convention, we denote the mass eigenstate with the largest fraction of v_e as v_1
- We haven't determined which mass eigenstate is the lightest \rightarrow "hierarchy"
 - Normal: v_1 is the lightest, just like the electron is the lightest charged lepton
 - Inverted: v_3 is the lightest

Sources of ν 's for oscillation studies

$$\nu_{\mu} \rightarrow \nu_{\mu}$$
 oscillations

• Probability of v_{μ} survival in a v_{μ} beam

Erika Catano-Mur (William & Mary, NOvA)

$\rightarrow v_e$ oscillations in matter

• Probability of v_e appearance in a v_{μ} beam

$$P\left(\nu_{\mu} \to \nu_{e}\right) \approx \left|\sqrt{P_{\text{atm}}}e^{-i(\Delta_{32} + \delta_{CP})} + \sqrt{P_{\text{sol}}}\right|^{2}$$
$$\approx P_{\text{atm}} + P_{\text{sol}} + 2\sqrt{P_{\text{atm}}}P_{\text{sol}}\left(\cos\Delta_{32}\cos\delta_{CP}\mp\sin\Delta_{32}\cos\Delta_{32}\sin\Delta_{32}\cos\Delta_{32}\cos\Delta_{32}\sin\Delta_{32}\Delta_{32}$$

- $v_{\mu} \rightarrow v_{e}$ depends on:
 - *CP* phase: δ_{CP}
 - Mass hierarchy and matter effects
 - Atmospheric parameters: $\sin^2(\vartheta_{23}), \Delta m^2_{32}$
 - The smallest mixing angle: ϑ_{13}
 - Solar parameters: $\sin^2(\vartheta_{12}), \Delta m^2_{12}$

Open Questions Disappearance Constraints

NOVA: $\nu_{\mu} \rightarrow \nu_{\mu}, \, \overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\mu}$ Reactor: $\overline{\nu}_e \rightarrow \overline{\nu}_e$ Solar: $\nu_e \rightarrow \nu_e$

Erika Catano-Mur (William & Mary, NOvA)

Vacuum and no CP violation: neutrinos and antineutrinos are the same

CP-violation through δ creates opposite effects in neutrinos and antineutrinos

Erika Catano-Mur (William & Mary, NOvA)

CP-violation through δ creates opposite effects in neutrinos and antineutrinos

Erika Catano-Mur (William & Mary, NOvA)

Matter effects also introduce opposite neutrino-antineutrino effects.

Erika Catano-Mur (William & Mary, NOvA)

The octant creates the same effect in neutrinos and antineutrinos.

Comparing long baseline experiments

14

NOvA's physics goals

- Is the mass hierarchy "normal" or "inverted"?
- Is there a v_µ v_τ symmetry? I.e., is the large mixing angle maximal? If not, what is the octant?
- Is CP violated in the lepton sector?

In addition: Are there other neutrinos beyond the three known active flavors? Plus: cross section analyses, searches for exotic phenomena and non-beam physics

NOvA

- NOvA is a long-baseline neutrino oscillation experiment
- Study neutrinos from the NuMI beam at Fermilab
- Two functionally identical detectors
 - Far Detector (FD) 14 kton; on the surface
 - Near Detector (ND) 0.3 kton; underground

The NuMI neutrino beam

The NuMI antineutrino beam

- Antineutrino Beam 10³ Neutrinos / m² / GeV / 5 \times 10¹³ POT 2 3 Neutrino energy (GeV) NOv $x_{F} = 0.050$ 2 π^{+}/π^{-} 0.5 1.5 $\mathbf{0}$ p_ [GeV/c]
- Production cross section is a little higher for $\pi^+ \rightarrow v_\mu$ than for $\pi^- \rightarrow \overline{v}_\mu$
 - p^+ colliding with p^+ and n^0 in the target
- Wrong-sign: v in the \overline{v} beam (or vice versa).
- Off-axis beam reduces the wrong-sign.
 - WS primarily would primarily come from the unfocused highenergy tail.

NA49, Eur. Phys. J. C 49 897 (2007)

- The big difference is in the interaction: the cross section for antineutrinos is
 ~2.8 times lower than for neutrinos.
- Antineutrinos also tend to have more lepton energy and less hadronic energy.
 - Lower kinematic y
 - More forward-going

MINERvA, Phys.Rev. D95 (2017) no.7, 072009

Erika Catano-Mur (William & Mary, NOvA)

21

NOvA detectors

22

18000 channels. 1 km from beam source ~5 neutrino events per spill (every 1.33 seconds) Negligible cosmic background (underground)

344000 channels. 810 km from source <1 neutrino event per day 130 kHz cosmic ray background

Erika Catano-Mur (William & Mary, NOvA)

23

Erika Catano-Mur (William & Mary, NOvA)

24

All hits recorded in 550 µsec (beam: ~10 µsec)

Erika Catano-Mur (William & Mary, NOvA)

Coarse event-level timespace clustering

Erika Catano-Mur (William & Mary, NOvA)

Zoom-in in time

Selected slice in the 10 mus beam window = neutrino beam candidate

Erika Catano-Mur (William & Mary, NOvA)

27

Zoom-in in space

Same neutrino beam candidate

Erika Catano-Mur (William & Mary, NOvA)

28

Vertexing:

Find lines of energy depositions + optimize

Erika Catano-Mur (William & Mary, NOvA)

29

Clustering:

Find clusters in angular space around vertex. Merge views based on topology and prong dE/dx

Erika Catano-Mur (William & Mary, NOvA)

Tracking:

Trace single particle trajectories (muons)

Event topologies

Particle identification

- We use a *convolutional neural network*.
- Successive layers of "feature maps":
 - Create many variants on the original image which enhance different features.
 - Later layers apply variations to the feature maps from the previous layer.
- Ends with a "feed forward" neural network to create a multi-label classifier.

32

Particle identification

33

Responding to hadronic activity.

Measuring Neutrino Energy

v_u events

- Neutrino energy is the sum of muon and hadronic energy.
- Muon energy is a function of track length.
- Hadronic energy reconstructed calorimetrically.
 - Includes activity overlapping the muon track.

- Neutrino energy is a function of EM and hadronic energy.
- EM "prongs" are identified with a singleprong CVN variant.
 - All remaining activity is hadronic.
- Both energies reconstructed calorimetrically.

Oscillation analysis strategy

35

Oscillation analysis strategy

Muon neutrino analysis

- 1. Identify contained v_{μ} CC events in each detector
- 2. Measure Near and Far energy spectra
- 3. Extract oscillation information from differences between both energy spectra

Electron neutrino analysis

- 1. Identify contained v_e (v_μ) CC candidates in each detector.
- 2. Use data to improve the prediction from the simulation:
 - ND ν_{μ} candidates $\rightarrow \nu_{e}$ signal in the FD
 - ND v_e candidates \rightarrow FD beam backgrounds
 - FD data outside of the beam time window \rightarrow FD cosmic ray background
- 3. Interpret any FD data excess over predicted backgrounds as v_e appearance

Erika Catano-Mur (William & Mary, NOvA)

ground opearance

Constraints from ND Data

• Use Reco-to-true migration for $\nu_{\mu} \rightarrow \nu_{\mu}$ and $\nu_{\mu} \rightarrow \nu_{e}$ signal "extrapolation"

- v_e backgrounds use the F/N in bins of reconstructed energy
- Other (small) beam backgrounds are taken directly from the simulation

Erika Catano-Mur (William & Mary, NOvA)

39

Muon neutrinos in the ND

- Selected muon neutrino and antineutrino charged current interactions in ND.
- Used in the signal extrapolation
- Wrong sign contamination in ND is estimated to be 3% for neutrino beam and 11% for antineutrino beam.

Electron neutrinos in the ND

- The ND v_e -like sample has no $v_e/\overline{v_e}$ appearance all background.
- For the neutrino beam we use two data-driven techniques to constraint the background composition.
- For the antineutrino beam scale all components proportionally for now.

v_e Decomposition

v_e Decomposition

The CC/NC constrained using the number of observed Michel electrons.

• Determine the fraction of the two components in each analysis bin.

FD selection and cosmic rejection

- Because the far detector sits on the surface, cosmic backgrounds are a significant issue.
- Even with a pulsed beam and excellent timing resolution, there is still a significant cosmic background.
- Selection steps are tuned to reduce cosmic backgrounds while maintaining sensitivity to oscillations

Erika Catano-Mur (William & Mary, NOvA)

Binning for Sensitivity: v_{μ} **Events**

- Oscillation sensitivity depends on spectrum shape
- Improve sensitivity by separating high-resolution and low-resolution events.
- Split into 4 quantiles by hadronic energy fraction.
 - Muon energy resolution (3%) is much better than hadronic energy resolution (30%).

NOvA Preliminary

v_e and $\overline{v_e}$ data at the Far Detector

Strong (>4 σ) evidence of \overline{V}_{e} appearance

Extracting oscillation parameters

Erika Catano-Mur (William & Mary, NOvA)

52

Systematic Uncertainties

Most important systematics:

- Detector Calibration
 - Will be improved by the test beam program
- Neutrino cross sections
 - Particularly nuclear effects (RPA, MEC)
- Muon energy scale
- Neutron uncertainty **new** with \overline{v} 's

Results

Normal hierarchy Upper Octant $\sin^2 \vartheta_{23} = 0.58 \pm 0.03$

Best Fit $\Delta m^2 = (2.51^{+0.12}_{-0.08}) \times 10^{-3} \text{ eV}^2$

NOvA Preliminary

- Note: you cannot read the rejection of the MH from this plot.
 - This is an FC-corrected plot of significance for rejecting particular sets of values (δ , octant, hierarchy).
 - It is *not* a likelihood surface, so it cannot be profiled to remove δ and the octant.
- Additionally, the MH itself is highly non-Gaussian so we need to use FC.
 - A binary choice with degenerate, unknown parameters.

Mass Hierarchy Preference

NOvA Preliminary

- $\chi^2(IH) \chi^2(NH) = 2.47$
- giving a *p*-value of **0.076** from the FC empirical χ^2 .
- or equivalently **1.8σ**

NOvA prospects - 2019

Update with ~80% more antineutrino data right around the corner!

Erika Catano-Mur (William & Mary, NOvA)

NOvA prospects - 2019

- 2019 analysis to be presented at the Fermilab Users Meeting in June
- Same 9.48E20 POT of neutrino beam data; 12.33 E20 POT antineutrinos
- Using the same analysis techniques as the 2018 analysis
- Potentially observe:
 - Different best fit values for ssth23 and dmsq, driven by the numu data
 - Slightly different significance of rejection of the IH and the lower octant
 - Less likely: extreme fluctuations

NOvA prospects

- Extended running through 2024, proposed accelerator improvement projects and test beam program enhance NOvA's ultimate reach.
- 3 σ sensitivity to hierarchy (if NH and $\delta_{CP}=3\pi/2$) for allowed range of θ_{23} by 2020. 3 σ sensitivity for 30-50% (depending on octant) of δ_{CP} range by 2024.

NOvA prospects

- Extended running through
 2024, proposed accelerator
 improvement projects and test
 beam program enhance NOvA's
 ultimate reach.
- 2+ σ sensitivity for CP violation in both hierarchies at $\delta_{CP}=3\pi/2$ or $\delta_{CP}=\pi/2$ (assuming unknown hierarchy) by 2024.

Conclusions

- We have begun the measurement of antineutrino appearance at long baseline.
 - Analyzed the first NOvA antineutrino beam dataset 6.9×10²⁰ POT plus 8.9×10²⁰ POT of neutrino beam data
 - Update with ~80% more antineutrino data coming very soon!
- We have strong evidence for \overline{v}_{ρ} appearance at long baseline.
 - >4σ above background, including wrong-sign.
 - Achieved in our first antineutrino result thanks to outstanding beam performance and support from Fermilab!
- A joint analysis of $v_{\mu}/\overline{v}_{\mu}$ disappearance and v_e/\overline{v}_e appearance prefers:
 - The Normal Hierarchy at 1.8 σ and excludes IH, $\delta_{CP} = \pi/2$ at > 3 σ .
 - Non-maximal mixing at 1.8σ and similarly prefers the upper-octant.
- NOvA can reach 3σ sensitivity to the hierarchy by 2020 for the most favorable δ , and >30% of the δ range by 2024.
 - Thanks to extended running, accelerator improvements, and analysis improvements thanks to the test beam.

h4

Thanks!

Backup

Erika Catano-Mur (William & Mary, NOvA)

Other Selections

- Some basic additional cuts:
 - Contained, fiducial events, wellreconstructed, reasonable energy range
- An additional v_{μ} requirement: a track identified as a muon.
 - CVN identifies events with a muon, but it does not identify the muon track.
 - Identify muons in reconstructed tracks using a kNN
 - Track length, dE/dx, scattering, fraction of track-only planes

67

NOvA Preliminary

- Additional cosmic rejection needed at the Far Detector.
 - 11 billion cosmic rays/day in the Far Detector on the surface.
 - 10⁷ rejection power required *after* timing cuts are applied.
- The *v_µ* sample uses a BDT based on:
 - Track length and direction, distance from the top/sides,

fraction of hits in the muon, and CVN.

- Cosmic rejection for the *v_e* sample is in 2 stages:
 - Core sample: require contained events, beam-directed events, away from the detector top
 - **Peripheral sample**: events failing the core selection can pass a BDT cut plus a tight CVN cut.
 - Different BDT from v_{μ} based on the same containment variables used for cuts in the core sample.

- Additional cosmic rejection needed at the Far Detector.
 - 11 billion cosmic rays/day in the Far Detector on the surface.
 - 10⁷ rejection power required *after* timing cuts are applied.
- The *v_µ* sample uses a BDT based on:
 - Track length and direction, distance from the top/sides,

fraction of hits in the muon, and CVN.

- Cosmic rejection for the *v_e* sample is in 2 stages:
 - Core sample: require contained events, beam-directed events, away from the detector top
 - **Peripheral sample**: events failing the core selection can pass a BDT cut plus a tight CVN cut.
 - Different BDT from v_{μ} based on the same containment variables used for cuts in the core sample.

Binning for Sensitivity: v_{μ} Events

- Data-MC shape agreement good within each quantile.
- By extrapolating each separately, we transport kinematic differences between data and simulation to the FD.
 - Can see this in the different normalizations applied to each quantile.

Data

Area-normalized MC

Shape-only systematics Wrong-sign

Future Sensitivity: Octant and Maximal Mixing

- Above 3 σ sensitivity to θ_{23} maximal mixing outside of the 0.42-0.58 range by 2024.
- Above 3 σ sensitivity for octant determination outside of 0.4-0.6 range by 2024.

71

0.7

Test Beam Program

- The test beam program is how we will realize those analysis improvements.
 - Reduced systematics
 - Additional validation of ML techniques
 - Simulation improvements
- Installation and commissioning efforts are ongoing
- Full data taking this fall

72
Neutral current disappearance

•For the neutrino beam sample we predict 188 ± 13 (syst.) interactions (38 bkg.) and observe 201.

•For the antineutrino beam sample we predict 69 ± 8 (syst.) interactions (16 bkg.) and observe 61.

> No significant suppression of Neutral current interactions observed for neutrinos or antineutrinos

73

Systematics Reduced with Extrapolation

74

Pulls in the Fit

- A total of 49 systematic parameters were included in the fit.
- Largest pulls mostly correspond to the systematics already called out as most important.
 - Exception: Cherenkov is a part of "Detector Response"
- For systematics affecting both neutrinos and antineutrinos, we see consistent pulls from from both parts of the data.

Neutrino-only Antineutrino-only

Efficiency for Neutrinos vs. Antineutrinos

Extrapolation with Resolution Bins

Extrapolation with Resolution Bins

82

Wrong-sign Constraint with Neutron Capture

- Look for delayed clusters of hits following stopping muons.
- Fit the various time components to measure the rate of neutron captures in bins of neutrino energy.
- Then fit the neutron captures vs. reconstructed energy to extract the number of v_{μ} CC and NC events in the neutrino and antineutrino beams.

Wrong-sign Constraint with Neutron Capture **NOvA Preliminary** 0.12 0.12 NOvA ND v_{μ} mode NOvA ND $\overline{\nu}_{\mu}$ mode Data - Data 0 Visible neutrons/track Visible neutrons/track leutral current Neutral current 0.08 0.08 $\rightarrow \mu^{-}$ $\rightarrow \mu^{-}$ 0.06 0.06 0.04 0.04 0.02 0.02 0 2 5 3 6 3 Reconstructed E_v CC (GeV) Reconstructed E, CC (GeV)

- Look for delayed clusters of hits following stopping muons.
- Fit the various time components to measure the rate of neutron captures in bins of neutrino energy.
- Then fit the neutron captures vs. reconstructed energy to extract the number of v_{μ} CC and NC events in the neutrino and antineutrino beams.

85 What's new with \overline{v} 's? Wrong-sign contamination

- ~10% systematic uncertainty on wrong-sign from flux and cross section
 - Both in v_{μ} -like and v_{e} -like events.
 - Does not include uncertainties from detector effects.
- Confirm using data-driven cross-checks of the wrong-sign contamination
 - 11% wrong-sign in the v_{μ} sample checked using neutron captures.
 - 22% wrong-sign in beam v_{e} checked using identified protons and event kinematics. •

NOvA Preliminary

Flux and crosssection systematic fake experiments

0.3

Simulation Tuning

- We tune our simulation to get a better central value and to set systematic uncertainties.
- Beam flux is tuned using the **Package to Predict the FluX** using external data.
 - Minerva, Phys. Rev. D 94, 092005 (2016)
- We tune our cross-section model primarily to account for nuclear effects.
 - Backstory: disagreements are seen in cross sections as measured on a single nucleons vs. in more complex nuclei.
 - Nuclear effects are a likely solution, but the theory for them remains incomplete.
 - So, we tune using a combination of **external theory** inputs and our own ND data.

Fig: Teppei Katori, "Meson Exchange Current (MEC) Models in Neutrino Interaction Generators" AIP Conf.Proc. 1663 (2015) 030001

(hA model)

Tuning the Neutrino Interaction Model

From **external theory**:

• Valencia RPA model⁺ of nuclear charge screening applied to QE.

- "Model uncertainties for Valencia RPA effect for MINERvA", Richard Gran, FERMILAB-FN-1030-ND, arXiv:1705.02932
- ⁶ "Meson Exchange Current (MEC) Models in Neutrino Interaction Generators", Teppei Katori, NuInt12 Proceedings, arXiv:1304.6014

From **external theory**:

- Valencia RPA model⁺ of nuclear charge screening applied to QE.
- Same model applied to resonance.

From **NOvA ND data**:

10% increase in non-resonant inelastic scattering (DIS) at high W.

- "Model uncertainties for Valencia RPA effect for MINERvA", Richard Gran, FERMILAB-FN-1030-ND, arXiv:1705.02932
- "Meson Exchange Current (MEC) Models in Neutrino Interaction Generators", Teppei Katori, NuInt12 Proceedings, arXiv:1304.6014

From external theory:

- Valencia RPA model⁺ of nuclear charge screening applied to QE.
- Same model applied to resonance.

From NOvA ND data:

- 10% increase in non-resonant inelastic scattering (DIS) at high W.
- Add MEC interactions
 - Start from Empirical MEC*
 - Retune in $(q_0, |\mathbf{q}|)$ to match ND data
 - Tune separately for v/\overline{v}

- + "Model uncertainties for Valencia RPA effect for MINERvA", Richard Gran, FERMILAB-FN-1030-ND, arXiv:1705.02932
- * "Meson Exchange Current (MEC) Models in Neutrino Interaction Generators", Teppei Katori, NuInt12 Proceedings, arXiv:1304.6014

MEC Uncertainties

- We also determine uncertainties on the MEC component we introduce.
 - Both on shape and total rate.
- Repeat the tuning procedure with shifts in the Genie model.
 - Turn Genie systematic knobs coherently to push the non-MEC

x-sec more QE-like or more RES-like.

MEC Uncertainties

- We also determine uncertainties on the MEC component we introduce.
 - Both on shape and total rate.
- Repeat the tuning procedure with shifts in the Genie model.
 - Turn Genie systematic knobs coherently to push the non-MEC x-sec more QE-like or more RES-like.
- Independently, Minerva* has also tuned a multi-nucleon component to their data.
- The resulting tune is $\sim 1\sigma$ away from the NOvA tune.

Minerva, Phys. Rev. Lett. 116, 071802 (2016) Minerva, Phys. Rev. Lett. 120, 221805 (2018)

Improved Flux Model NovA Simulation 1.4 Flux Uncertainty 2016 Analysis 1.4 Vμ 2017 Analysis 1.2 1.2

- Package to Predict the FluX (**PPFX**) from MINERvA.
 - Based on thin target hadron production data from NA49 and MIPP.
- Significantly reduced systematic uncertainties.
 - Central values also changed within prior systematics, but not shown here.

93

New Flux

NuMI Medium Energy Beam

Scintillator Model

- Absorbed and re-emitted Cherenkov light is a small but important component of our scintillator response.
 - Particularly for low-energy protons in hadronic showers.
- Was one of our largest uncertainties, now reduced by an order of magnitude.
 - Previously accounted for with second order terms in our scintillator model.
 - Those terms were unusual, so we placed large systematics.
- Expected energy resolution for v_{μ} CC events increased from 7% to 9%.

New neutron response systematic

- \vec{v} 's have neutrons where v's have protons.
 - Often several hundred MeV of energy.
 - Modeling these fast neutrons is known to be challenging.
- See some discrepancies in an enriched sample of neutronlike prongs.
- New systematic introduced:
 - Scales the amount of deposited energy of some neutrons to cover the low-energy discrepancy.
- Shifts the mean v_{μ} energy by 1% in the antineutrino beam and 0.5% in the neutrino beam.
 - Negligible impact was seen on selection efficiencies.

New neutron response systematic

- \vec{v} 's have neutrons where v's have protons.
 - Often several hundred MeV of energy.
 - Modeling these fast neutrons is known to be challenging.
- See some discrepancies in an enriched sample of neutronlike prongs.
- New systematic introduced:
 - Scales the amount of deposited energy of some neutrons to cover the low-energy discrepancy.
- Shifts the mean v_{μ} energy by 1% in the antineutrino beam and 0.5% in the neutrino beam.
 - Negligible impact was seen on selection efficiencies.

v_{ρ} and $\overline{v_{\rho}}$ Background at the Far Detector

- 14.7 15.4 total v_{e} background 4.7 – 5.7 total \overline{v}_{e} background
 - Wrong-sign background depends on the oscillation parameters.
- Largest backgrounds are from real electrons: beam $v_e/\overline{v_e}$ and wrong-sign.
 - The amount of wrong-sign background varies with the oscillation parameters.
- Most other beam backgrounds contain a π^0 .

Introduction to neutrino oscillations

- **Neutrinos:** neutral leptons, only lacksquareinteract weakly. Names refer to associated charged lepton:
 - Electron neutrino, \mathcal{V}_{e}
 - Muon neutrino, V_{μ}
 - Tau neutrino, V_{τ}

 Z^0 Neutral current weak interaction

Fundamental particles in the Standard Model

C С U L

3 families of leptons

Erika Catano-Mur (William & Mary, NOvA)

Oscillating

4 force carriers Higgs boson

Long baseline experiment design

Long baseline experiment design

Erika Catano-Mur (William & Mary, NOvA)

Long baseline experiment design

Sources of uncertainty include

- Flux: number of neutrinos produced
- **Cross section**: how often they interact

Erika Catano-Mur (William & Mary, NOvA)

Long baseline experiment goals

- **Electron neutrino appearance** $(\nu_{\mu} \rightarrow \nu_{e})$: Sensitive to θ_{23} , δ_{CP} , and the neutrino mass hierarchy
- Muon neutrino disappearance $(\nu_{\mu} \rightarrow \nu_{\mu})$: Sensitive to θ_{23} and Δm_{32}^2

Joint $v_e + v_\mu$ analysis Constrain the parameter space

 $\delta_{CP} = ?$ $\sin^2 \theta_{13} = 0.0219 \pm 0.0012$ $|\Delta m_{32}^2| = (2.44 \pm 0.06) \times 10^{-3} \text{ eV}^2$ Mass hierarchy: ?

$\sin^2 \theta_{12} = 0.304 \pm 0.014$ $\Delta m_{21}^2 = (7.53 \pm 0.18) \times 10^{-5} \text{ eV}^2$ $\sin^2 \theta_{23} = 0.51 \pm 0.05$

New for this analysis:

- A shorter, simpler architecture trained on updated simulation.
- Replaced Genie truth labels with final state labels.
 - Exploring using final states with protons to constrain WS backgrounds.
- Separate training for the neutrino and antineutrino beams.
 - Wrong-sign treated as signal in training.
 - 14% better efficiency for $\overline{\nu}_{e}$ with a dedicated network. •

New for this analysis:

- A shorter, simpler architecture trained on updated simulation.
- Replaced Genie truth labels with final state labels.
 - Exploring using final states with protons to constrain WS backgrounds.
- Separate training for the neutrino and antineutrino beams.
 - Wrong-sign treated as signal in training.
 - 14% better efficiency for $\overline{\nu}_{e}$ with a dedicated network.

Cross-checks: Muon-removed, Electron-added 107

- We can create a control sample of "electron neutrino" events by removing the muon and replacing it with a simulated electron.
- Compare the efficiency between MRE events with real and simulated hadronic showers.
 - Allows us to focus on the effect of the hadronic shower on efficiency.
- Efficiency agrees between data and MC at the 2% level for both neutrino and antineutrino beams.

NOvA Preliminary

200

Neutrino Beam

Beam

Cross-checks: Muon-removed from bremsstrahlung 108

- Bremsstrahlung showers in cosmic ray • muons provide a sample of known electron showers in data at the Far Detector.
- Efficiency of data and simulated brem showers agrees within systematics for neutrino and antineutrino CVN.

Cross-checks: Muon-removed from bremsstrahlung 109

- Bremsstrahlung showers in cosmic ray muons provide a sample of known electron showers in data at the Far Detector.
- Efficiency of data and simulated brem showers agrees within systematics for neutrino and antineutrino CVN.

NuMI muon neutrino beam

Erika Catano-Mur (William & Mary, NOvA)

- 120 GeV

NuMI: neutrinos from the Main Injector Part of Fermilab's accelerator complex

Linac: H- ions, 400 MeV **Booster:** protons, 8 GeV Main Injector: protons,

These protons are used to make the NuMI beam

NuMI muon neutrino beam

- MI proton beam is steered onto a graphite target •
- Produced hadrons are focused in and charge-sign-selected by two magnetic horns
- 675 m decay pipe lacksquare
- Predominantly pions and kaons, decay modes: ullet

 $\pi^+ \rightarrow \mu^+ + \nu_{\mu},$ $\Rightarrow \nu_{\mu}$ beam $K^+ \rightarrow \mu^+ + \nu_\mu$

- Small contamination: v_e, \overline{v}
- Reverse the horn current $\Rightarrow \overline{\nu}_{\mu}$ beam

Components

v_{μ}	97.5%
anti- v_{μ}	1.8%
V _e	0.7%

Aside: we use Protons on Target (POT) as the units of neutrino beam intensity

NuMl off-axis

- FD located 14 mrad off-axis angle
 - 2-body π decay gives narrow range of v energies
- Tune peak energy for oscillations
 - More events at max oscillations
 - Fewer backgrounds.

Erika Catano-Mur (William & Mary, NOvA)

Calibration

- Largest effect that needs correction is attenuation in the WLS fibre.
- Stopping cosmic muons provide a standard candle for setting absolute energy scale.

Erika Catano-Mur (William & Mary, NOvA)

FD cosmic data - plane 84 (horizontal), cell 12

25

20

/ cm

Ц

Mean

-500

Erika Catano-Mur (William & Mary, NOvA)

114

Statistical Approach: Feldman-Cousins

• Replace the standard χ^2 with an empirical distribution, $F(x \mid \vartheta)$:

 $F(x \mid \vartheta) =$ Fraction of N experiments where $[\chi^2(\text{fixed } \vartheta) - \chi^2(\text{best fit}) = x]$

- Pseudo-experiments are generated from the data profile at ϑ .
 - i.e. fit all other parameters to data holding ϑ fixed at a particular value.
 - This procedure gives proper coverage while minimizing over-coverage.*
- A point ϑ is inside the (1- α) confidence interval if less than (1- α) experiments are more extreme than the data.
 - i.e. if the integral of $F(x \mid \vartheta)$ up to the observed $\Delta \chi^2$ at ϑ is < (1- α).

* Test coverage using method from: R. L. Berger and D. D. Boos, J. Amer. Statist. Assoc., 89, 1012 (1994)

FC for Mass Hierarchy

- Note: deciding if any individual point ϑ_0 is outside a CI is equivalent to a hypothesis test where H_0 is $\vartheta = \vartheta_0$.
 - The same technique applies to this mass hierarchy hypothesis test.
- Since our best fit is in the NH, we want to know how strongly we reject the IH.
 - So H_0 is IH and we generate pseudo-experiments at our best fit in the IH. •
 - Follow the FC procedure with:

χ^2 (fixed ϑ) - χ^2 (best fit) $\rightarrow \chi^2$ (IH) - χ^2 (best fit)

- If an experiment has a best fit in the IH, then the difference is 0.
- This pile-up at 0 behaves like a physical boundary: it increases significance. •

NOvA Preliminary

Limiting Case: No sensitivity

- Half of experiments in each hierarchy and $\Delta \chi^2 = 0$
- *p* = 0.5
- 50% for either NH or IH

Probability & biprobability

NOvA: L=810 km, E=2.0 GeV

								_
								_
								_
								_
								_
								_
								_
								_
								_
								_
								_
								_
								_
	1			F			2	2
	T) ,		C	J
	→ 1	V	}	0/	$\hat{\mathbf{n}}$			
L	/	'e	;	/	~			
			•					

Oscillation probabilities depend on:

Source-detector distance (L)

8

NOvA: L=810 km, E=2.0 GeV

Ο

No matter effects $\sin^2 2\theta_{13} = 0.085$ $|\Delta m_{32}^2| = 2.44 \times 10^{-3} eV^{2}$ $\sin^2\theta_{23}=0.5$

6

%

Oscillation probabilities depend on:

- Source-detector distance (L)
- Neutrino energy (E_{ν})

Oscillation probabilities depend on:

- Source-detector distance (L)
- Neutrino energy (E_{ν})
- Osc. parameters $(\theta_{12}, \theta_{13}, \theta_{23}, \delta_{CP})$
- Mass squared differences $(\Delta m_{21}^2, |\Delta m_{32}^2|)$

Oscillation probabilities depend on:

- Source-detector distance (L)
- Neutrino energy (E_{ν})
- Osc. parameters $(\theta_{12}, \theta_{13}, \theta_{23}, \delta_{CP})$
- Mass squared differences $(\Delta m_{21}^2, |\Delta m_{32}^2|)$
- Neutrino mass hierarchy $(sign(\Delta m_{32}^2))$

122

NOvA: L=810 km, E=2.0 GeV

 \bigcirc

No matter effects – $sin^{2}2\theta_{13}=0.085$ – $l\Delta m_{32}^{2}l=2.44\times10^{-3}eV^{2-1}$ $sin^{2}\theta_{23}=0.5$ –

Normal hierarchy

 $\frac{4}{4} \qquad 6 \qquad 8$

- Allowed range for $\delta_{CP} \in [0, 2\pi)$
- CP-conservation: $\delta_{CP} = 0, \pi$
- Max. CP violation: $\delta_{CP} = \pi/2, 3\pi/2$

NOvA: L=810 km, E=2.0 GeV

No matter effects – $sin^{2}2\theta_{13}=0.085$ – $l\Delta m_{32}^{2}l=2.44\times10^{-3}eV^{2-1}$ $sin^{2}\theta_{23}=0.5$ –

Normal hierarchy

6

%

8

- Allowed range for $\delta_{CP} \in [0, 2\pi)$
- CP-conservation: $\delta_{CP} = 0, \pi$
- Max. CP violation: $\delta_{CP} = \pi/2, 3\pi/2$

124

NOvA: L=810 km, E=2.0 GeV

No matter effects – $sin^{2}2\theta_{13}=0.085$ – $l\Delta m_{32}^{2}l=2.44\times10^{-3}eV^{2}$ $sin^{2}\theta_{23}=0.5$

Normal hierarchy

6

%

8

- Allowed range for $\delta_{CP} \in [0, 2\pi)$
- CP-conservation: $\delta_{CP} = 0, \pi$
- Max. CP violation: $\delta_{CP} = \pi/2, 3\pi/2$

No matter effects $\sin^2 2\theta_{13} = 0.085$ $|\Delta m_{32}^2| = 2.44 \times 10^{-3} eV^{2}$ $\sin^2 \theta_{23} = 0.5$

Normal hierarchy

8 6 %

Matter effects: in the normal hierarchy, increase for neutrinos and decrease for antineutrinos. Opposite effect for inverted hierarchy.

NOvA: L=810 km, E=2.0 GeV $\sin^2 2\theta_{13} = 0.085$ $|\Delta m_{32}^2| = 2.44 \times 10^{-3} eV^2$ $\sin^2\theta_{23}=0.5$ Normal hierarchy 8 6 %

Moving from the lower octant $(\sin^2 \theta_{23} < 0.5)$ to the upper octant $(\sin^2 \theta_{23} > 0.5)$: probabilities increase for both neutrinos and antineutrinos, both hierarchies.

127

NOvA: L=810 km, E=2.0 GeV $\sin^2 2\theta_{13} = 0.085$ $|\Delta m_{32}^2| = 2.44 \times 10^{-3} eV^2$ $\sin^2\theta_{23}=0.404, 0.623$ Upper octant Sinz Normal hierarchy 8 6 %

A different $\left| \Delta m_{32}^2 \right|$ results in an overall shift of the probability curves

