

Searches for New Physics on the Intensity Frontier: The Belle II Experiment

Andreas Warburton McGill University / [UCL] 31 March 2017

Frontiers…

Cern Courier, March 2016, p. 25 R. Jacobsson & D. Dominguez

find evidence for the new physics we know must exist *an interlocking framework that addresses* UCL HEP Seminar, Belle II, A. Warburton, 2017.03.31

UCL HEP Seminar, Belle II, A. Warburton, 2017.03.31

Outline

- The B Factory Era
	- 3 Decades of Detectors & Flavour Measurements
- Next generation: Belle II physics program (two examples) $B \to D^* \tau \nu$
	- Dark Sector
- Belle II Experimental Challenges
	- Accelerator and Detector Upgrades
	- Understanding and Monitoring the Backgrounds
	- Schedules and Status

The B Factory Era

Three Decades of *B*-Factory results: *a rich harvest*

Goals of (heavy) flavour physics:

- Study the flavour mixing and *Charge-Parity violation* (*CP*) in all its aspects
- Look for new physics far beyond the current energy frontier in rare and forbidden processes
- By these measurements we hope to get insight into the mystery of the observed flavour structure

Large contributions from *B*-Factory experiments:

- Symmetric e+e and hadronic experiments set the path
- Flavour physics at the luminosity frontier shaped by BaBar and Belle; plus recent huge contributions from LHCb
- Origin of *CP* in the SM was topic of the physics Nobel prize in 2008

The B-Factories

UCL HEP Seminar, Belle II, A. Warburton, 2017.03.31

The B-Factories

^BABAR 10.58 426 4*.*⁶⁸ ⇥ ¹⁰⁸ *BB Collision cross section to hadrons in nb*

UCL HEP Seminar, Belle II, A. Warburton, 2017.03.31

proton-atom collisions proton-proton collisions

Note: also proton-antiproton collisions

(And proton-proton: ATLAS & CMS)

UCL HEP Seminar, Belle II, A. Warburton, 2017.03.31

Flavour physics at the luminosity frontier with asymmetric B factories

To a large degree shaped flavour physics in the previous decade

The CKM Picture of Quarks in the Standard Model

The CKM Matrix source of *ChargeParityViolation* in SM

• Unitary 3x3 Matrix, parametrizes rotation between mass and weak interaction eigenstates in Standard Model

$$
\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}
$$

Weak Eigenstates CKM Matrix Mass Eigenstates

- Fully parametrized by **four** parameters if unitarity holds: three real parameters and one complex phase that, if non-zero, indicates *CPV*
- Can be visualized using triangle equations, e.g.

$$
V_{CKM}V_{CKM}^{\dagger} = \mathbf{1} \qquad \rightarrow \qquad V_{ub}^{*}V_{ud} + V_{cb}^{*}V_{cd} + V_{tb}^{*}V_{td} = 0
$$

B Factories: CP Violation in the B-Meson System

Quark Mixing Matrix CKM Unitarity Triangle

Presence of *CPV* phase encoded in apex of triangle in the complex plane Over-constraining the CKM matrix allows for non-trivial test of the SM

S. Robertson

B Factories: CP Violation in the B-Meson System From **discovery** (2001) by BaBar & Belle, to **precision measurements**.

- Picture still holds 16 years later, constrained with remarkable precision
- But: there remains room for new physics contributions

Current open questions: *New physics and anomalies*

Can roughly be grouped into two categories: **A lot more data will always be fun**

- Fundamental questions that the SM in current form does not provide, e.g. **•** Fundamental questions that the ONFIT current form does not provide, e.g.
• Mhat is Dark Matter?
	- What is Dark Matter?
- What causes the large CPV in the Universe?
	- Gravity?
- Existing anomalies in the Flavour sector, e.g. • Gravity *:*
• Evisting enemalies in the Floweur esster, e.g.
- Inclusive and exclusive $|V_{qb}|$ disagreement
- Enhancements in semi-tauonic decays
 • Particular be accommodated even in MFV models and December of December 2014
	- Deviations in penguin decays
	- Very rare B_s and B decays $-$ not an anomaly!

Flavour and energy frontier experiments are *complementary* probes:

Zoltan Ligeti

Anomalies — what is there to learn?

If one carries out many measurements, one of course will every once in a while measure something that does not fit *(cf. look elsewhere effect)*

It is interesting though, that some measurements show persistent differences that either cannot be statistical in nature or show up for several experiments that don't use the same observables in their measurements

- Could point to a common systematic error all measurements underestimate (our limited understanding of QCD could be the culprit) and similar models for backgrounds are used
- Or are we seeing an emergence of the first recent sign of New Physics?

To discern one from the other we need to keep measuring

• Future results from the LHC and the intensity frontier will either confirm or reject these anomalies

The Belle II experiment will play an important role in this

The Belle II Physics Program

- We know there must be new physics, but we don't know what it is
- Our approach is to make a large number of measurements for which the outcomes can be accurately predicted using the Standard Model
- Because of quantum effects, these are sensitive to massive particles, even beyond the reach of the LHC
	- \cdot B-mixing \Rightarrow heavy top quark; Higgs mass prediction

Predicted uncertainties on a selection of proposed Belle II measurements proposed belle II measu given. *L^s* denotes the approximate integrated luminosity at which the statistical precision

of a given observable will match its systematic uncertainty. Errors given in % represent

• **Ideally, a pattern of deviations from the SM will elucidate the nature of the New Physics**

Belle2-Note-021

$B\to D\tau^-\bar{\nu}_\tau$ and $\bar{B} \to D\tau^- \bar{\nu}_{\tau}$ and $\bar{B} \to D^* \tau^- \bar{\nu}_{\tau}$

• Fraction of B mesons that decay to D(∗) τν should be equal to $D^{(*)}$ μν or $D^{(*)}$ eν, except for mass difference (lepton universality)

$$
R(D^*) \equiv \frac{\mathcal{B}(B \to D^* \tau^- \bar{\nu}_{\tau})}{\mathcal{B}(B \to D^* \ell^- \bar{\nu}_{\ell})} \quad R(D) \equiv \frac{\mathcal{B}(B \to D \tau^- \bar{\nu}_{\tau})}{\mathcal{B}(B \to D \ell^- \bar{\nu}_{\ell})} \qquad \ell = e \text{ or } \mu
$$

21

• Charged Higgs would affect decay to τ, but not e or μ. UCL HEP Seminar, Belle II, A. Warburton, 2017.03.31

• The tau decays to e or μ plus neutrinos \Rightarrow same particles are reconstructed in the final state, other than the neutrinos, which we can't detect.

• If we can't detect neutrinos, how do we know we have the correct final state?

Reconstruction: Tag the companion B meson

- **Infer signal B-meson kinematics by reconstructing the tag B-meson (hadronic, semileptonic)**
- **A powerful tool for reconstructing events with neutrinos**
- **Not available at proton colliders like the LHC**

 $\bar{B} \to D^{(*)}$ $\tau^-\bar\nu_\tau$

Belle II vs. LHCb: Very different reconstructions

G. Ciezarek et al., arXiv:1703.01766

Separating $B \to D^{(*)}\tau^-\bar{\nu}_\tau$ and $\bar{B} \to D^{(*)}\tau^- \bar{\nu}_{\tau}$ and $\bar{B} \to D^{(*)}$ $\ell^-\bar\nu_\ell$

- But how to distinguish $\bar{B}\to D^*\tau^-\bar{\nu}_\tau$ from $B\to D^*\mu^-\bar{\nu}_\mu$? $\bar{B} \to D^* \tau^- \bar{\nu}_{\tau}$ from $\bar{B} \to D^* \mu^- \bar{\nu}_{\mu}$ $\rightarrow \mu^- \bar{\nu}_{\mu} \nu_{\tau}$
	- momentum of μ is lower
	- more neutrinos \Rightarrow more "missing" energy (or missing mass)

Distinguishing $B \to D^{(*)}\tau^-\bar{\nu}_\tau$ and $\bar{B} \to D^{(*)}\tau^- \bar{\nu}_{\tau}$ and $\bar{B} \to D^{(*)}$ $\ell^-\bar\nu_\ell$

• A glimpse at how complicated it actually is...

UCL HEP Seminar, Belle II, A. Warburton, 2017.03.31

Current World Situation: Moriond EW 2017

• **All experimental results so far measure larger R(D*) & R(D) than SM predicts**

Potential Interpretations:

• Charged Higgs in extensions to SM

Leptoquark mediators

- Other? Important to use Belle II to improve precision:
	- \cdot Target inclusive and light-meson $R(\pi)$ modes, excited states $R(D^{**})$
	- Differential measurements
	- Projected sensitivities:

 $D^{0,(*)}$ $D^{+,(*)}$

G. Ciezarek et al., arXiv:1703.01766

 \bar{u}, a

 \bar{u}, d

The Dark Sector

- The dark sector is hypothesized to contain massive particles that carry "dark charge" (like electric charge), which couples to a dark photon A′. Unlike the real photon, the A′ would not be massless.
- The A' and γ mix with strength ε. $\gamma \sim \sim \sim \sim \sim \sim$
- Any process that creates a photon can create an A'.

e⁺
$$
\frac{1}{A'}
$$
 $\frac{1}{A'}$ $\frac{1}{X'}$ $\frac{1}{X'}$

Connection with Dark Matter

- In this model, dark matter would be heavy dark fermions. These could annihilate to produce a pair of dark photons, which could decay to $e^+e^- \implies$ astronomical excess of e^+ .
	- assuming that the A′ is the lightest dark particle.

Search for a dark photon at an e⁺e⁻ collider

 $\sigma \propto \epsilon^2 \alpha^2 / E_{CM}^2$

- Final state is a photon plus e⁺e⁻ or μ ⁺ μ ⁻. Very large backgrounds from SM processes. dark-sector fermions .
- Difference is that the invariant mass of the $\mu^+\mu^-$ pair is the A′ mass for signal, a smooth distribution for background. (WIMPS) . In each collision is the relevant Federal Fig. 1. In Fig. 1
A *l* 1999 ago for algunal a gross at la diatribution for lagal corrar nad A Thass for sighal, a shipolifical mixeriolition packground.

 t . Hearty 31 C. Hearty

Method:

Select single-photon final states

reconstruct missing mass

look for bump

• $0.22 < m_{A'} < 10.2$ GeV/c²

BaBar search for $A' \rightarrow \mu^{+}\mu^{-}$

UCL HEP Seminar, Belle II, A. Warburton, 2017.03.31

Latest limits from BaBar

Limits (90% CL) on the mixing parameter ε 10^{-2} **BABAR** $K \rightarrow \pi \vee \vee$ preliminary W $(g-2) \pm 5\sigma$ **BABAR 2017** favored 10^{-3} $(g-2)$ **NA64** arXiv:1702.03327 **Submitted to PRL** 10 10^{-3} 10^{-2} 10^{-1} 1 $m_{A'}$ (GeV) 10 M. Roehrken, Moriond EW 2017

Note: BaBar ceased data taking in 2008

Measurement rules out the entire region preferred by the (g-2)µ anomaly

Projected Belle II limits on A′ parameters

• Many dedicated experiments planned (at JLab in particular), but Belle II has unique reach. UCL HEP Seminar, Belle II, A. Warburton, 2017.03.31

Invisible decays of the dark photon

- The A' will decay to other dark particles if it can. These do not interact in the detector, so the observed final state is a single photon.
- Very challenging measurement; large backgrounds.

Belle II projection for $A' \rightarrow$ invisible

• With appropriate trigger and background suppression, Belle II can rapidly exceed probable BaBar limits. 36 UCL HEP Seminar, Belle II, A. Warburton, 2017.03.31

B. Golob

What about LHCb?

- LHCb is running and exceeding expectations
- There are overlaps between the physics programs but also numerous unique strengths
	- Large baryonic samples and decays into visible particles play into **LHCb's** corner
	- Missing particles, inclusive measurements, low multiplicity final states with few constraints are **Belle II**'s forte
	- For some channels there will be neck-and-neck competition!

FIG. 2: SuperKEKB and LHCb integrated luminosity projections in fb¹ and ab¹

Experimental challenges

UCL HEP Seminar, Belle II, A. Warburton, 2017.03.31

RAS-HJ22V 013

■ 運転内容、タイマー予約内容などを室内機に送信します。

☆図の液晶表示は、リセットスイッチを押した直後の表示を示します。 本ルームエアコンには無い機能も表示されます。

To achieve the necessary sensitivity to further push the intensity frontier, the instantaneous luminosity needed to increase from 2.1x 10³⁴ cm⁻² s⁻¹ to 8 x 10³⁵ cm⁻² s⁻¹

The key to this is a beam-configuration called the **nano-beam scheme** that squeezes the beam to a very small vertical spot size of about 50 nm

Major upgrade of existing accelerator needed

F. Bernlochner 41

Transformation of a *B*-Factory into a **Super** *B*-Factory

New superconducting final

Redesign the lattices of HER & LER to squeeze the emittance. Replace short dipoles with longer ones (LER)

Replaced old beam pipes with TiN coated beam pipes with antechambers

Damping ring **control system** Low emittance positrons to inject Low emittance gun

Low emittance electrons to inject

Reinforced RF (radio frequency) system for higher beam currents, improved monitoring &

Upgrade positron capture section

F. Bernlochner 42

UCL HEP Seminar, Belle II, A. Warburton, 2017.03.31

Transformation of a *B*-Factory into a **Super** *B*-Factory

F. Bernlochner 43

UCL HEP Seminar, Belle II, A. Warburton, 2017.03.31

Arrived Feb. 2017: Last "missing part" of SuperKEKB

Recent View: Belle II Interaction Region

The Belle II Detector

To cope with the higher luminosity, a new detector is needed Design concept similar to the B-Factory detectors Belle and BaBar

Needs to cope e.g. with 20-40 times larger beam backgrounds, many technological challenges

The Belle II Detector

To cope with the higher luminosity, a new detector is needed Design concept similar to the B-Factory detectors Belle and BaBar

Belle II / SuperKEKB Luminosity projections

F. Bernlochner 48

UCL HEP Seminar, Belle II, A. Warburton, 2017.03.31

Belle II / SuperKEKB Luminosity projections

BEAST II Phase 1 Setup

Belle II / SuperKEKB Luminosity projections

Longer term Belle II schedule

Beam Backgrounds at SuperKEKB

- Deterioration of detector resolution, damage to detector components
- Expected ~40-fold increase in beam backgrounds compared to KEKB
- Scattered e-/e+ hit the beam-pipe and create electromagnetic showers and neutrons
- Simulations used to get an estimate of background rates in each sub-detector

Beam-gas interactions

- Coulomb scattering of beam particles off of residual gas
- Bremsstrahlung
- Proportional to beam current

Synchrotron radiation

• Collimators and shielding prevent scattered particles from reaching the detector

Touschek scattering

- Intra-beam scattering ٠
- Scattering rate inversely proportional to beam size, proportional to beam current

Luminosity backgrounds

- e-e+ Bhabha scattering
- Followed by photon emission
- Rate proportional to luminosity
- Neutrons copiously produced in a photo-nuclear reaction of photons and iron

Injection background

- New particles injected every 100 ns
- Newly injected particles interact with existing beam particles
- **Hard to simulate**

A. Fodor (McGill)

UCL HEP Seminar, Belle II, A. Warburton, 2017.03.31

Radiative Bhabhas: $e^+e^- \rightarrow \gamma e^+ e^-$

• Thousands per bunch crossing.

• Despite shielding, many 1 – 2 MeV photons reach the detector.

- e.g. extraneous hits; compromised photosensor lifetimes ₅₄ C. Hearty UCL HEP Seminar, Belle II, A. Warburton, 2017.03.31

BEAST II, Phase 2: Full Belle II but with specialized background detectors in place of Si Strips & Pixels

- FANGS: Covering 90°, 180°, 270° in ϕ , full acceptance in θ
- CLAWS: Covering 135° , 225° in ϕ , full acceptance in θ
- PLUME: Covering 135°, 225° in ϕ , partial acceptance in θ

Sven Vahsen (U. of Hawaii)

All background components present in Phase II, but much less space for commissioning detectors.

CLASS

• Phase II ends when we are convinced that the real vertex detectors will not be damaged.

BEAST II Phases 2 & 3: Canadian Hardware Fast Real-Time Beam Background Monitors

- Measure "trickle injection" backgrounds from lost beam particles as individual bunches are topped up during live data-taking
	- * Not included in background simulations: must be measured empirically in data
	- * Fast feedback to SuperKEKB control room needed, for accelerator tuning

New electromagnetic calorimeter endcap shield design

• High density polyethylene (HDPE) + stainless steel layers

neutrons

 V/e^{\pm} showers

- Proposal: make recesses in HDPE layer which would enclose the scintillation-detector based beam-background monitors
- \cdot Needs:
	- Fast timing for observing the injection backgrounds
	- Wide energy range
	- High radiation hardness

Beam Background Monitors: Design

Hamamatsu R7761-70 Photomultiplier

- · suitable for operation in high magnetic field
- peak wavelength 420 nm
- gain 10⁴ at 1.5 T
- compact design, 39 mm diameter

LYSO crystal

- wavelength of emission maximum at 420 nm
- short decay time of 40 ns \rightarrow well matches the beam top-up time of 100 ns
- high light yield of 32000 photons/MeV
- · radiation length of 1.14 cm
- good radiation hardness
- · radioactive isotope 176Lu
- \rightarrow 30×30 mm cylindrical crystals

Belle II Canada Team

The Belle II Collaboration

• 686 collaborators (~25% Japanese), 23 countries/regions.

(2015 figures)

⁵⁹ C. Hearty

Next Steps…

- **Detector roll-in (to Interaction Region): April 11th**
- **This summer/fall: install beam-background monitors into calorimeter shields**
- **Cosmic-ray data-taking shifts (summer)**
- **Feb. 2018, start BEAST II Phase 2 data taking**
- **Dec. 2018, start Belle II Phase 3 physics data taking, with Canadian beam-background monitors in long-term operation**

Summary

- High-intensity flavour-physics measurements play an important role in our pursuit for answers to fundamental questions in particle physics
- Although operating at a relatively lower energy than the LHC, the Belle II experiment is sensitive to a broad range of new physics, through a large number of measurements
- The high luminosity and high resulting backgrounds are challenging for the experiment, but Belle II is on track for first collisions in 2018

Special Thanks:

- UCL ATLAS group (for office space at CERN!)
- Florian Bernlochner (U. Bonn)
- Christopher Hearty (UBC/IPP)
- Steven Robertson (McGill/IPP)

