

Observational properties of feebly interacting dark matter

Tommi Tenkanen

in collaboration with

M. Heikinheimo, K. Kainulainen, S. Nurmi, K. Tuominen, and V. Vaskonen

Queen Mary University of London

Talk based on arXiv: 1506.04048, 1601.07733, 1604.02401, 1704.05359

University College London 28/4/2017

E-mail: t.tenkanen@qmul.ac.uk

Introduction

Evidence for Dark Matter

- Great deal of evidence for the existence of dark matter: rotational velocity curves of galaxies, Bullet Cluster¹, acoustic peaks in the Cosmic Microwave Background (CMB) radiation spectrum...
- ▶ Still the nature of dark matter is unknown

1 Image: Chandra X-ray Observatory

- What is the correct explanation for the invisible matter content observed in the universe? Does the dark matter particle exist? Or are there many dark matter particles?
- ▶ Are they WIMP's, FIMP's, SIMP's, GIMP's, PIDM's, WISP's, ALP's, Wimpzillas, or sterile neutrinos? Or should gravity be modified?
- How can we tell which model is the correct one (if any)?

Many on-going experiments exist² \blacktriangleright

But... what if dark matter interacts only feebly with the known particles, or not at all?

² Original image: Max-Planck-Institut Für Kernphysik

The Model

 \blacktriangleright The scalar sector of the model is specified by the potential

$$
V(\Phi,s)=\mu_h^2\Phi^\dagger\Phi+\lambda_h(\Phi^\dagger\Phi)^2+\frac{1}{2}\mu_s^2s^2+\frac{\lambda_s}{4}s^4+\frac{\lambda_{sh}}{2}\Phi^\dagger\Phi s^2
$$

- **► Here Φ and** *s* are, respectively, the usual Standard Model Higgs doublet and a real singlet scalar.
- The coupling between Φ and *s* acts as a portal between the Standard Model and an unknown Hidden Sector (the so-called Higgs portal).

\blacktriangleright We can also introduce a sterile neutrino ψ

$$
\mathcal{L}_{\text{Hidden}} = \bar{\psi} (\textit{i} \overline{\emptyset} - \textit{m}_\psi) \psi + \textit{i} \textit{gs} \bar{\psi} \gamma_5 \psi
$$

Either the scalar *s* or the fermion ψ , or both, can play the role of dark matter

► Or, we can promote *s* to be a complex doublet of a hidden *SU*(2) symmetry

$$
\mathcal{L}_{\text{hidden}} = -\frac{1}{4} F^{\mu\nu}_i F^i_{\mu\nu} + (D^\mu s)^\dagger (D_\mu s) - \mu_s^2 s^\dagger s - \lambda_s (s^\dagger s)^2, \qquad (1)
$$

Here
$$
F^i_{\mu\nu} = \partial_\mu A^i_\nu - \partial_\nu A^i_\mu + g \epsilon^{ijk} A^j_\mu A^k_\nu
$$
 and $D^\mu = \partial^\mu - i g \tau A^\mu/2$

Either the scalar *s* or the vector A_μ can play the role of dark matter

► How was the observed DM abundance produced?

Dark Matter production mechanisms

▶ There are basically two mechanisms for dark matter production: freeze-out and freeze-in³

³ The original image is from Hall et al. (arXiv:0911.1120)

- \triangleright Dark matter is initially in thermal equilibrium with the SM particles. This requires a rather strong coupling, $\lambda_{sh} \simeq 0.1$.
- May lead to a WIMP miracle: thermal relic with weak cross-section and a mass $m_s \sim EW$ scale gives the right relic abundance.
- \triangleright Starts to be very constrained by experiments⁴

⁴ review, see e.g. M. Klasen, M. Pohl, G. Sigl (arXiv: 1507.03800)

- Requires $\lambda_{\rm sh}\lesssim 10^{-7}$, or otherwise the singlet sector thermalizes with the SM (this is sometimes called a FIMP scenario)
- \triangleright Is produced from many different sources including thermal bath of Standard Model particles and primordial scalar condensates⁵
- \blacktriangleright Leaves observable imprints on CMB⁶
- \triangleright Cannot (usually) be tested by collider experiments but can be tested by cosmological and astrophysical observations⁷

⁵ S. Nurmi, TT, K. Tuominen (arXiv: 1506.04048)

⁶ K. Kainulainen, S. Nurmi, TT, K. Tuominen, V. Vaskonen (arXiv: 1601.07733)

⁷ M. Heikinheimo, TT, K. Tuominen, V. Vaskonen (arXiv:1604.02401)

Thermal History of the Hidden Sector

- An initial population of DM is produced through Higgs decays *h* → *ss* at *T* ∼ *m*_b. In the standard freeze-in scenario, this is also the final abundance.
- However, if the number changing interactions $2 \rightarrow 4$ in the hidden sector are fast, they will lead to thermalization of the hidden sector
- ▶ This reduces the average momentum (temperature) of DM particles and increases their number density until thermal equilibrium is reached

Dark Freeze-out

The 2 \leftrightarrow 4 interactions maintain thermal equilibrium until the 4 \rightarrow 2 interaction rate drops below the Hubble rate and the number density freezes out

Examples of number-changing interactions.

This mechanism is referred to as dark freeze-out

Dark Freeze-out

 \blacktriangleright Three regimes: thermal case (dark freeze-out, above red line), non-thermal case (the standard freeze-in, below the green line), no solution at all (red region)

Tommi Tenkanen **Observational properties of feebly interacting data matter 28/4/2017** 16/27

Hidden Sector dynamics

Similar results can be derived for other fields in the hidden sector, \blacktriangleright including sterile neutrino or vector DM

See more: Heikinheimo et al., arXiv:1604.02401 (sterile neutrinos), 1704.05359 (sterile neutrinos and vectors)

Observational Constraints

Þ. Astrophysical observations provide an upper bound on DM self-interactions⁸

$$
\frac{\sigma_{DM}}{\textit{m}_{DM}}=\frac{9\lambda_s^2}{32\pi\textit{m}_s^3}\lesssim1\frac{\textit{cm}^2}{\textit{g}}
$$

Do we expect DM to have large self-interactions?

Tommi Tenkanen **Observational properties of feebly interacting data matter 28/4/2017** 19/27

⁸ See e.g. D. Harvey et al. (arXiv: 1503.07675)

Cosmic inflation

Image: Planck/ESA

- Must explain the observed curvature perturbations in the Cosmic Microwave Background (+ several fine-tuning problems) \Rightarrow Cosmic inflation
- Inflaton: SM Higgs? *f*(*R*)? Flat direction in MSSM? Axion? ...

Dark Matter from a primordial field

During a de Sitter type cosmic inflation, scalar fields typically \blacktriangleright acquire fluctuations proportional to the inflationary scale 9, $h, s \simeq H_* \leq 10^{14}$ GeV

Scalar fields fluctuate during cosmic inflation.

 \triangleright After inflation, these scalar condensates will decay to particles

The end products can constitute Dark Matter

^{9&}lt;br>Starobinsky & Yokoyama (arXiv:astro-ph/9407016)

- **Fig.** The observational bounds are significantly different depending on whether the singlet constitutes isocurvature or adiabatic dark matter
- \triangleright Adiabatic perturbations are perturbations in the total energy density (in the geometry of the Universe) such that $\delta(n_x/n_y) = 0$
- \triangleright Isocurvature perturbations are variations in the particle number ratios (no effect on geometry), $\delta(n_X/n_Y) \neq 0$
- \blacktriangleright In principle, we could see a large fraction of isocurvature perturbations in the CMB. But we do not¹⁰.
- ▶ The dark matter component sourced by a primordial scalar field clearly is isocurvature and therefore strictly constrained by CMB observations11:

$$
\frac{\Omega_{\rm DM}h^2}{0.12}\lesssim 10^{-5}\lambda_{\rm s}^{-1/4}
$$

Tommi Tenkanen Cobservational properties of feebly interacting data matter 28/4/2017 23/27

¹⁰Planck collaboration (arXiv:1502.02114)

¹¹See K. Kainulainen, S. Nurmi, TT, K. Tuominen, V. Vaskonen (arXiv: 1601.07733) for details

 \triangleright To constrain the hidden sector parameters, we compute the DM abundance 12

$$
\frac{\Omega_{\rm DM}h^2}{0.12}\simeq 10^{-4}\lambda_{\rm s}^{-5/8}\left(\frac{m_{\rm DM}}{\rm GeV}\right)\left(\frac{H_*}{10^{11}\rm GeV}\right)^{3/2},
$$

and combine it with the isocurvature bound, $\Omega_{\rm DM} h^2 / {\rm 0.12} \lesssim 10^{-5} \lambda_{\rm s}^{-1/4}.$

- For fixed m_{DM} , H_* , this gives a lower bound on λ_s
- \triangleright Note: Ω_{DM} depends on H_* \Rightarrow a novel connection between the dark matter abundance and the inflationary scale

¹²See S. Nurmi, TT, K. Tuominen (arXiv: 1506.04048) and K. Kainulainen, S. Nurmi, TT, K. Tuominen, V. Vaskonen (arXiv: 1601.07733) for details

The results

- Three regimes: The dark freeze-out (above red line), the standard freeze-in (below green line), no solution at all (red)
- ▶ Two constraints: DM self-interactions (yellow), isocurvature perturbations (gray contours for different *H*∗'s)

Conclusions and Outlook

 \blacktriangleright The nature of dark matter is still unknown

- **Thermal history of hidden sector contains many interesting** features, which have been studied only vaguely
- Cosmological and astrophysical observations provide a valuable resource on testing different dark matter models
- \triangleright We have derived stringent constraints on Higgs portal dark matter model and found a novel connection between dark matter abundance and the energy scale of inflation