XCone N-jettiness as an Exclusive Cone Jet Algorithm

Frank Tackmann

Deutsches Elektronen-Synchrotron

UCL HEP Seminar November 27, 2015

based on Stewart, FT, Thaler, Vermilion, Wilkason (arXiv:1508.01516) Thaler, Wilkason (arXiv:1508.01518)

Introduction.

4 伊 ト

Why Jets?

QCD doesn't let us observe quarks and gluons directly, only jets of hadrons

4 伊 ▶

Why Jets?

QCD doesn't let us observe quarks and gluons directly, only jets of hadrons

Jets tell us the QCD final state of the hard interaction process

36 years ago:

Today: Essentially the same (just a bit more complicated ...)

Executive Summary of Higg[s](#page-4-0) Production.

 $\sim 2/3$ of Higgs bosons are produced at low p_T

 $\sim 1/3$ of Higgs bosons have sizeable p_T

• Kinematics and number of jets distinguishes different Higgs processes

• Discriminates against different backgrounds (e.g. in $H \to WW, \tau \tau, b\bar{b}$ [\)](#page-3-0)

Why Else Jets?

Jets are essential also in EW final states

Recall $BR(W \to q\bar{q}') = 67\%$

 $BR(Z \rightarrow q\bar{q}) = 70\%$

Diboson excess is in dijet mass spectrum of two *filtered W/Z-tagged jets* [ATLAS 1506.00962]

 \leftarrow \oplus

Why Else Jets?

Jets are essential also in EW final states

Recall $BR(W \to q\bar{q}') = 67\%$

 $BR(Z \rightarrow q\bar{q}) = 70\%$

• Diboson excess is in dijet mass spectrum of two *filtered W/Z-tagged jets* [ATLAS 1506.00962]

Search strategies increasingly rely on exploiting jet substructure

- **Boosted decays: top-jets, W/Z-jets, Higgs-jets**
- Distinguish quark jets (from BSM cascades) from gluon jets (QCD backgrounds)
- **Jet mass, shape, charge, tracks, ...**

 \tilde{g} π \tilde{q} $\tilde{\chi}_2$ π $\tilde{\ell}$ + π

 $q \neq \sqrt{q}$ / ℓ^- / ℓ^+

Jets Are Ubiquitous.

• How many jets are there? \Rightarrow What is a jet and what is not a jet?

Frank Tackmann (DESY) 2015-11-27 4/24

This is a jet

◆母→

This is a jet

This is not a jet

◆母→

This is a jet

This is not a jet

∢ കி

This is a jet

This is not a jet

$p_{\parallel} \gg p_{\perp}$

 $p_{\parallel} \sim p_{\perp}$

 p_{\parallel} : total momentum along direction of flight p_{\perp} : intrinsic transverse momentum

Basically want to combine all energetic particles with $p_{\parallel} \gg p_{\perp}$

- **•** Jets should correspond to initiating hard partons
- It is inevitable to scoop up soft radiation
- Should be IR safe (better: insensitive to nonperturbative corrections)
- **•** Transverse/angular size is a key parameter: jet radius R

Development of jet algorithms has a long history (that I won't discuss)

- Jade, fixed cone, iterative cone, MidPoint, k_T , CA, anti- k_T , ...
- • Standard choice today: anti- k_T [Cacciari, Salam, Soyez]

Key Features of Anti-k $_T$

Sequential combination where hard particles are combined first

- Jet boundary is insensitive to soft radiation
	- Important for theory, factorization properties
- **•** Jets are conical with uniform and constant area $\approx \pi R^2$ (except when clipped by a harder jet)
	- Important for experimental calibration, pile-up removal, ...
- These important properties of anti- k_T are maintained by XCone

Key Features of Anti-k $_T$

Sequential combination where hard particles are combined first

- Jet boundary is insensitive to soft radiation
	- Important for theory, factorization properties
- **•** Jets are conical with uniform and constant area $\approx \pi R^2$ (except when clipped by a harder jet)
	- Important for experimental calibration, pile-up removal, ...
- These important properties of anti- k_T are maintained by XCone

Why a New Jet Algorithm?

What's wrong with anti- k_T ?

• Nothing per se, it answers the question:

"How many jets has this event and what are they?"

• It is not very good at identifying overlapping jets or jet substructure (It's not designed for that, and this is why many dedicated substructure techniques have been developed.)

∢ শী ।

Why a New Jet Algorithm?

What's wrong with anti- k_T ?

• Nothing per se, it answers the question:

"How many jets has this event and what are they?"

• It is not very good at identifying overlapping jets or jet substructure (It's not designed for that, and this is why many dedicated substructure techniques have been developed.)

XCone is an *exclusive* jet algorithm

 \bullet It answers a different question, for a given fixed N:

"What is the best way to interpret this event as an N-jet event?"

- This is the relevant question if one already knows the signal topology one is looking for
- \bullet It always returns "the best" N jets
- **•** Provides smooth transition between resolved and boosted regimes

4 何)

XCone vs. Anti- k_T .

Boosted $t\bar{t} \rightarrow$ hadrons (event from BOOST 2010 sample)

Well-separated jets

• XCone jets practically the same as leading anti- k_T jets

∢ കி

XCone vs. Anti- k_T .

Boosted $t\bar{t} \rightarrow$ hadrons (event from BOOST 2010 sample)

Well-separated jets

• XCone jets practically the same as leading anti- k_T jets

Adjacent/overlapping jets

- anti- k_T merges signal jets, picks up ISR, FSR jets
- • XCone still finds signal jets, split by nearest-neighbor

Subst[r](#page-19-0)ucture Without Substructure.

Boosted $H \to b\bar{b}$ with increasing p_T

Key advantage of XCone

- Exclusivity allows signal jets to be found regardless of proximity
- • Automatically resolves overlapping jets
- ⇒ Provides stable performance and smooth transition from resolved (well-separated) regime to boosted (substructure) regime

4 伊 ト

Overview of Algorithm.

Jet partitioning

• Start from standard N-jettiness [Stewart, FT, Waalewijn]

 $\widetilde{\mathcal{T}}_{N}(\{n_{k}\}) = \sum \min \left\{ \rho_{\text{jet}}(p_{i}, n_{1}), \ldots, \rho_{\text{jet}}(p_{i}, n_{N}), \rho_{\text{beam}}(p_{i}) \right\}$ i $=\widetilde{\mathcal{T}}_N^a+\widetilde{\mathcal{T}}_N^b+\widetilde{\mathcal{T}}_N^1+\cdots \widetilde{\mathcal{T}}_N^N$ q_1

- Given N jet axes $\{n_k = (1, \vec{n}_k)\}\$, partitions particles into N jet regions and beam region q_a .
- \triangleright Shape and size of jet regions depend on $\rho_{\rm jet}$ and $\rho_{\rm beam}$ measures

Overview of Algorithm.

Jet partitioning

• Start from standard N-jettiness [Stewart, FT, Waalewijn]

 $\widetilde{\mathcal{T}}_{N}(\{n_{k}\}) = \sum \min \left\{ \rho_{\text{jet}}(p_{i}, n_{1}), \ldots, \rho_{\text{jet}}(p_{i}, n_{N}), \rho_{\text{beam}}(p_{i}) \right\}$ i $=\widetilde{\mathcal{T}}_N^a+\widetilde{\mathcal{T}}_N^b+\widetilde{\mathcal{T}}_N^1+\cdots \widetilde{\mathcal{T}}_N^N$ q_1

- Given N jet axes $\{n_k = (1, \vec{n}_k)\}\$, partitions particles into N jet regions and beam region q_a .
- \triangleright Shape and size of jet regions depend on $\rho_{\rm jet}$ and $\rho_{\rm beam}$ measures

Axis finding

• Minimize over all jet axes

$$
\mathcal{T}_N = \min_{n_1,n_2,...,n_N} \widetilde{\mathcal{T}}_N(\{n_k\})
$$

- ^I Finding exact global minimum is computationally expensive (prohibitive)
- Finding approximate (local) minimum is sufficient and inexpensive (Procedure just needs to be IR safe and is part of the algorithm definition)

Conical Measure.

$$
\rho_{\text{jet}}(p_i,n_A) = p_{Ti} \left(\frac{R_{iA}}{R}\right)^{\beta}
$$

$$
\rho_{\text{beam}}(p_i) = p_{Ti}
$$

- **•** First used in context of N-subjettiness [Thaler, van Tilburg]
- Angular exponent β controls jet axis behaviour
	- \triangleright $\beta = 2$: Axis along total jet momentum
	- \triangleright $\beta = 1$: Axis along hardest cluster in a jet
- \bullet Pro: Yields exact cones of radius R for non-overlapping jets
- **Con: Nonlinear dependence on axis and** particle momenta, which is not ideal for axis finding and calculations

Geometric Measure.

[Jouttenus, Stewart, Tackmann, Waalewijn]

 $\rho_{\rm jet}(p_i,n_A)$ $\frac{n_A \cdot p_i}{\cdot}$ $\boldsymbol{\rho_0}$ ≈ $\bm{p}_{\bm{T} \bm{i}}$ $2\cosh y_A\;\;\rho_0$ R_{iA}^2 original:

$$
\rho_{\text{beam}}(p_i) = \min\{n_a \cdot p_i, n_b \cdot p_i\} = m_{Ti}e^{-|y_i|}
$$

modified:

 $\rho_{\rm beam}(p_i) =$ m_{Ti} $2\cosh y_i$

- Pro: Linear in both n_A and p_i
	- ^I Most natural/easiest for calculations
	- Resummation known to NNLL for any number of jets
- Con: Non-conical football jets
	- $\rho_0 \simeq R^2$, but area is y-dependent

Conical Geometric Measure[.](#page-25-0)

XCone default ($\beta = 2$) $\rho_{\rm jet}(p_i,n_A) = \frac{2\cosh y_A}{\mathbf{p}_2^2}$ $\frac{\partial n}{\partial R^2} n_A \cdot p_i \approx p_{Ti}$ R_{iA}^2 R^2 $\rho_{\mathrm{beam}}(p_i) = p_{Ti}$

Linear in p_i

√ Almost conical

Beam measure minimizes unassigned p_T , which means one typically finds N highest- p_T jets

Generalizes to

$$
\rho_{\rm jet}(p_i,n_A) = p_{Ti} \bigg(\frac{2n_A \cdot p_i}{n_{TA}p_{Ti}} \, \frac{1}{R^2} \bigg)^{\beta/2}
$$

 \bullet β controls axis behaviour as for conical

Jet Area.

. Jet area for geometric measures has a closed-form integral expression

- \blacktriangleright explicitly depends on y
- **Ighthare** Can be corrected for by taking $\rho_0 \rightarrow \rho(y_A, R)$ ("Geometric-R measure")
- **Conical measure has exact** $A = \pi R^2$
- XCone default is within 1% of exact conical area

(包)

Axis Minimization.

Step 1: Find a set of IR safe seed axes $\{n_A\}$ and partition event

Step 2: Update axes by minimizing \mathcal{T}_N^i in each region

Step 3: Re-partition event

Repeat steps 2 and 3 until axes have converged

Choice of Seed Axis.

For IR safety avoid any stochastic elements \rightarrow One-pass minimization

- Finding good set of seed axis is important to find good (local) minimum
- Run generalized exclusive k_T clustering
	- \blacktriangleright Pick metric and recombination scheme that mimic N-jettiness
	- Important to use the same R
	- Use direction of N jets as seed axis

Nontrivial test sample: Boosted tops in presence of ISR (Boost 2010 top sample)

• XCone jets ($\beta = 2$) that are aligned with those of the global \mathcal{T}_N minimum (found by brute force)

Case Studies.

4 伊 ト

Heavy Dijet Resonance.

Heavy $Z' \rightarrow q\bar{q} \rightarrow$ Signal: 2 hard back-to-back jets \rightarrow Pick N = 2

In resolved regime, XCone has practically the same performance as anti- k_T

- N = 1,2,3 XCone jets typically match N highest- p_T anti-k_T jets
- Over 90% of XCone jets are within $R/2$ of two hardest anti- k_T jets

 \leftarrow \oplus

Heavy Dijet Resonance.

Heavy $Z' \rightarrow q\bar{q} \rightarrow$ Signal: 2 hard back-to-back jets \rightarrow Pick N = 2

In resolved regime, XCone has practically the same performance as anti- k_T

- N = 1,2,3 XCone jets typically match N highest- p_T anti-k_T jets
- Over 90% of XCone jets are within $R/2$ of two hardest anti- k_T jets

∢ শী ।

 $pp \to VH(\to b\bar{b}) \to$ Signal: 2 close-by (b-)jets \to Pick N = 2

 $pp \to VH(\to b\bar{b}) \to$ Signal: 2 close-by (b-)jets \to Pick N = 2

 $pp \to VH(\to b\bar{b})$ \to Signal: 2 close-by (b-)jets \to Pick N = 2

B[o](#page-35-0)osted Higgs Reconstruction.

XCone allows standard resolved analysis to be smoothly extended into boosted regime without loss of performance

- Merging point: $p_T \simeq 2m_H/R \simeq 500 \,\text{GeV}$
- Effectively provides automatic transition from 2-jettiness to 2-subjettiness
- Further improvements possible, e.g. with $N = 3$ and explicit ISR veto

(শী)

Comparison to Exclusive k_T in Boosted Higgs.

Reconstructing Booste[d](#page-37-0) Hadronic Top.

Classic example of jet substructure

 $pp \to t\bar{t} \to WW b\bar{b} \to q\bar{q}q\bar{q}b\bar{b} \to$ Signal: 2 groups of 3 jets

Most obvious: Pick $N = 6$ with kinematic grouping of 3 nearby jets

Reconstructing Booste[d](#page-38-0) Hadronic Top.

Classic example of jet substructure

 $pp \to t\bar{t} \to WW b\bar{b} \to q\bar{q}q\bar{q}b\bar{b} \to$ Signal: 2 groups of 3 jets

Better: Pick $N = 2 \times 3$ (with $R_2 \rightarrow \infty$, $R_3 = 0.5$)

Boosted Top Reco[n](#page-39-0)struction ($N = 2 \times 3$).

Compare XCone with $N = 2 \times 3$ to

- "Resolved": 2 k_T jets ($R \gg 1$) with 3 anti-k_T subjets
- • "Boosted": 2 anti-k_T jets ($R = 1.0$) with 3 k_T subjets

Boosted Top Reco[n](#page-40-0)struction ($N = 2 \times 3$).

Compare XCone with $N = 2 \times 3$ to

- "Resolved": 2 k_T jets ($R \gg 1$) with 3 anti-k_T subjets
- • "Boosted": 2 anti-k_T jets ($R = 1.0$) with 3 k_T subjets
- Higher significance than traditional strategies across all p_T
- Further improvement possible with additional discrimination methods

Summary.

Jets are our window onto the hard interaction

An exclusive jet algorithm that works across kinematic regimes

- Well-suited for many LHC applications, particularly in intermediate "quasi-boosted" regimes
- Inherits good theory properties of underlying N-jettiness
- ⇒ Opens a wide array of possibilities to explore
- ⇒ Code is available in NSUBJETTINESS v2.2 in FASTJET CONTRIB