

Pierre V. Auger 1899-1993

A multi-messenger quest for the sources of the highest energy cosmic rays

Foteini Oikonomou-Penn State

UCL 27/8/15

The Astroparticle Physics Conference 34th International Cosmic Ray Conference July 30 - August 6, 2015 The Hague, The Netherlands

3

Detection

Detection

Detection

507 scintillator counters (1.2 km spacing)

Candidate sources

Minimum requirement -Confinement: R_{source} > r_{larmor}

$$E \leq E_{\text{max}} \sim 1 \text{ EeV Z } \left(\frac{B}{1\mu G}\right) \left(\frac{R_{\text{source}}}{1 \text{ kpc}}\right)$$

Sources must be extragalactic for $E > 1-10 \text{ EeV}$

Candidate sources

What information do we have?

What information do we have?

The energy spectrum

The energy spectrum

The energy spectrum

Composition

What information do we have?

Small propagation horizon at the highest energies!

Small propagation horizon at the highest energies!

UHECR Propagation in the intergalactic medium

UHECR Propagation in the intergalactic medium

FO, Connolly, Abdalla, Lahav, Thomas, Waters, Waxman: JCAP05(2013)015

Model of the expected UHECR source distribution: Galaxy surveys

Protons E > 55 EeV, PSCz

IRAS PSCz ~full sky ~ 10000 galaxies, ~far-IR selected: excellent probe of star-formation

Calculations take into account:

- proton energy losses
- galaxy weights as a function of redshift
- Auger exposure
- galaxy survey selection functions

FO, Connolly, Abdalla, Lahav, Thomas, Waters, Waxman: JCAP05(2013)015

Model of the expected UHECR source distribution: Galaxy surveys

Protons E > 55 EeV, PSCz

FO, Connolly, Abdalla, Lahav, Thomas, Waters, Waxman: JCAP05(2013)015 updated Auger dataset

Correlation with galaxy distribution

Hotspots in the UHECR sky

Auger Coll, A. Aab et al. 2015 ApJ, 804, 15

The future: AugerPrime

- Auger surface detector upgrade
- Run 2018-2024
- Composition information shower by shower

Are we going to detect anisotropy??

454 Auger UHECRs E≥40 EeV, 10% proton Xmax, 5% Swift-BAT AGN, θ ≤ 3°, d ≤ 100 Mpc Xmax - randomly assigned to fit Auger data

The future: Will better statistics help?

Objectives for next generation instrument:

- 10 30 x Auger annual exposure
- ▶ 40 EeV < E < 1000 EeV
- 1000-2000 events/5 years

JEM-EUSO Coll. 2013-arXiv:1305.2478

JEM-EUSO: Are we going to detect UHECR anisotropy?

With ≥600 protons

Looking for sources at UHE energies: Secondaries

Blazar emission

Extreme Hard-Spectrum TeV Blazars

Murase et al 2012, Tavecchio 2014...

FO, Murase, Kotera, A&A 568, A110 (2014)

Secondary UHECR synchrotron emission

FO, Murase, Kotera, A&A 568, A110 (2014)

UHECR synchrotron pair echo/halo

How will we establish if UHECR emission?

Multimessenger coincidences

Most violent phenomena must appear at multiple wavelengths-messengers

Multimessenger coincidences

Most violent phenomena must appear at multiple wavelengths-messengers

Transient discoveries -> Combine all fundamental forces

neutrinos

The Astrophysical Multimessenger Observatory Network (AMON)

How can we find UHECR sources with AMON?

Auger datasets suitable for transient searches:

UHE Hadrons [delayed by magnetic fields/directions scrambled]

WUHE Photons -loss length up to 30 Mpc

WHE Neutrinos

How can we find UHECR sources with AMON?

* **V** UHE neutrinos at flux levels detectable by Auger

How can we find UHECR sources with AMON?

* **V** UHE neutrinos at flux levels detectable by Auger

AMON discovery potential: Example Cosmic Neutrino Sources

*v-Nγ alerts: coincidence between at least single IceCube/Antares and Fermi-LAT/Swift-BAT/ HAWC 40

Outlook

AugerPrime, TA upgrade, JEM-EUSO

Anisotropy detection in 5 years, if H ≥10% at highest energies (if composition information)

• HAWC, CTA, HESS-2

Gamma-rays can unambiguously identify UHECR sources - need TeV spectra of high-z sources, timing (flares), angular resolution (halos)

- Multi-messenger astroparticle physics is happening NOW
- · AMON

Subthreshold multi-messenger transients, huge gain in discovery potential

