Sterile Neutrino Searches with MINOS and MINOS+

Leigh Whitehead UCL HEP Seminar 26/05/17

Outline

- Neutrino Oscillations
- The MINOS/MINOS+ Experiment
- Three-flavour results
- Sterile neutrino searches

Neutrino Oscillations

- Neutrino oscillations have become a well-established and well-described phenomenon over the last 20 years.
 - The Nobel Prize in Physics 2015 was awarded jointly to Takaaki Kajita and Arthur B. McDonald "for the discovery of neutrino oscillations, which shows that neutrinos have mass"
- Oscillations arise from the quantum mechanical interference between the neutrino mass states.
 - At least two of the neutrinos must be massive!
- The neutrino eigenstates of the weak interaction are not the same as the mass eigenstates.

Neutrino Oscillations

The PMNS Matrix

- Four parameters three mixing angles and a CP violating phase.
- Oscillations themselves are driven by mass-squared splittings:
 - With three neutrinos you can write down three of these, but only two are independent.

Mass Hierarchy

• The order of all the mass states isn't completely known.

- The sign of Δm^2_{21} is known from matter effects in the Sun and from the definition of ν_1 having the largest ν_e component.
- The sign of Δm^2_{32} is still unknown.

Current State of Measurements

- Very successful programme of measurements.
- The remaining unknowns:
 - Is the mass-hierarchy
 - Normal Δm^2_{32} > 0?
 - Inverted Δm^2_{32} < 0?
 - Is $\theta_{23} = 45^{\circ}$?
 - If not, is it higher or lower?
 - What is the value of δ ?
 - Is there CP violation in the neutrino sector?

K. A. Olive et al. (Particle Data Group), Chin. Phys. C 38, 090001 (2014).

Parameter	best-fit $(\pm 1\sigma)$				
$\Delta m_{21}^2 \ [10^{-5} \text{ eV}^2]$	$7.54^{+0.26}_{-0.22}$ 2 43 + 0 06 (2 38 + 0 06)				
$\sin^2 \theta_{12}$	$\begin{array}{c} 2.43 \pm 0.00 \ (2.33 \pm 0.00) \\ 0.308 \pm 0.017 \\ + 0.022 \end{array}$				
$\sin^2 \theta_{23}, \ \Delta m^2 > 0$ $\sin^2 \theta_{23}, \ \Delta m^2 < 0$	$\begin{array}{c} 0.437^{+0.033}_{-0.023} \\ 0.455^{+0.039}_{-0.031}, \end{array}$				
$\sin^2 \theta_{13}, \ \Delta m^2 > 0$	$0.0234^{+0.0020}_{-0.0019}$				
$\delta/\pi \ (2\sigma \text{ range quoted})$	$\begin{array}{c} 0.0240 _ 0.0022 \\ 1.39 _ 0.27 \\ -0.27 \end{array} (1.31 _ 0.23) \end{array}$				

$$\Delta m^2 = m_3^2 - \frac{\left(m_2^2 + m_1^2\right)}{2}$$

MINOS and MINOS+

The MINOS/MINOS+ Experiment

Far Detector 735 km from beam target 5.4 kton mass

Near Detector 1 km from beam target 1 kton mass

- MINOS/MINOS+ had two functionally identical, magnetised, tracking, sampling calorimeters.
 - Can distinguish muon charge from the curvature.
- Exposed by the NuMI beam at Fermilab.
- MINOS+ is the continuation of MINOS into the NOvA era at FNAL.

Note the Past Tense

- After 14 years, the MINOS FD has been removed from Soudan.
- The ND has been handed over to MINERvA.

The NuMI Beam

MINOS collected neutrinos from the NuMI beam at Fermilab.

- Neutrinos produced by decay of focused mesons produced in the target.
- Polarity of the horns can be reversed to produce an antineutrino beam.

Data Samples

Results shown today use all MINOS and 2 years of MINOS+ data

Neutrino Interactions in MINOS

• There are three main types of interactions seen in MINOS.

NC Event Selection

- The first step is to select the neutral current interactions.
- Two main selection criteria:
 - Event length and the extension of the track beyond the hadronic shower.

CC Event Selection

- Charged current interactions are selected from those that do not pass the neutral current selection.
 - Use a kNN to select CC interactions from the backgrounds.
 - Uses four topological and energy deposition variables as input.

Three Flavour

Oscillation Results

Three Flavour Oscillations

- MINOS was designed to measure the atmospheric scale oscillation parameters.
 - Look for disappearance of muon neutrinos in the FD relative to ND.
 - Measure muon neutrinos through charged current interactions.

Three Flavour Oscillations

• Obtain the following contours.

Three Flavour Oscillations

• This is a very competitive measurement of Δm_{32}^2 .

Beyond Three

Neutrino Flavours

How Many Neutrinos?

 Invisible width of the Z-boson from LEP very strongly measured that there are 3 neutrinos.

• For
$$m_
u < rac{1}{2}m_Z$$
 , and fourth

neutrino must not couple to the Z-boson.

- Hence the name *sterile*.
- Results from Planck:

 $N_{\rm eff} = 3.2 \pm 0.5$ $\sum m_{\nu} < 0.32 \ {\rm eV}$

P. A. R. Ade, et al. (2016) Astron. Astrophys. 594, arXiv 1502.01589

- The majority of neutrino oscillation data is well described by the three flavour model.
 - However, there are some outliers.
- Anomalous appearance of ν_e in short-baseline ν_μ beams.
- Gallium experiment calibration sources.
- Reactor neutrino flux deficit.
- The main point is that all three anomalies were consistent with oscillations at a mass-splitting scale of approximately 1 eV²

- LSND saw an excess of $\overline{
 u}_{\mu}
 ightarrow \overline{
 u}_{e}$
 - Could be interpreted as oscillations at a mass- splitting scale of approximately 1 eV²
- However, the KARMEN2 experiment saw results consistant with expectation.

Church et al. Phys. Rev. D66 (2002), p. 013001.

A. Aguilar-Arevalo et al. Phys. Rev. D64 (2001), p. 112007.

- The MiniBooNE experiment was devised to investigate these differing results...
 - Looked at $\,\overline{
 u}_\mu
 ightarrow \overline{
 u}_e\,$ and $u_\mu
 ightarrow
 u_e\,$

- MiniBooNE saw excess appearance in both neutrino and anti neutrino channels.
- Not identical to LSND, but allowed similar regions of phase-space.

- GALLEX and SAGE were two solar neutrino experiments.
- Calibrated using radioactive sources.
- Measured rates from the calibration sources showed consistent deficits.
- Again, consistent with a 1 eV² mass-splitting.

Gariazzo et al. J.Phys. G43 (2016) 033001 DOI:10.1088/0954-3899/43/3/033001

- The majority of reactor neutrino experiments have seen a deficit of $\overline{\nu}_e$.

Gariazzo et al. (2017). arXiv: 1703.00860 [hep-ex]

• Again, consistent with a 1 eV² mass-splitting, but...

- Daya Bay recently released results from studying their flux as a function of reactor fuel cycles to extract information on the uranium and plutonium components.
- Flux deficit appears to only come from the uranium flux.
- The sterile neutrino hypothesis for the reactor anomaly is: "incompatible with Daya Bay's observation at 2.6σ".

An et al. (2017). arXiv: 1704.01082 [hep-ex]

Null Results

 A number of muon neutrino disappearance experiments see no evidence of a sterile neutrino.

10.56x10²⁰ POT

 v_{μ} mode

10

- MiniBooNE + SciBooNE
- MINOS
- IceCube
- CDHS
- CCFR
- Super-K

Kopp et al. (2013) Super Collin et al. (2016) $\Delta m^2_{41}(eV^2)$ Excluded region 10^{0} $\Delta m_{41}^2/{
m eV}^2$ 10-2 MINOS data 90% C.L MINOS data 95% C.L. IceCube 99% CL Super-K 90% C.L 10⁻³ 99% CL sensitivity CDHS 90% C.L. (68% and 95%) CCFR 90% C.L. Kopp et al. (2013) SciBooNE + MiniBooNE 90% C.L Collin et al. (2016) 10° 10-4 10 10^{-1} 10^{-2} 10⁻³ 10⁻¹ $\sin^2 2\theta_{24}$ $\sin^2(\theta_{24})$

P. Adamson et al., Phys. Rev. Lett. 117, 151803 (2016).M. G. Aartsen et al. Phys. Rev. Lett. 117, 071801 (2016)

 10^{0}

 10^{-1}

IceCube 90% CL 90% CL sensitivity

(68% and 95%)

 $\Delta m^2_{41}/{
m eV^2}$

MB/SB D

MB/SB D

 10^{0}

Four Flavour Formalism

- Most common extension to include a 4th neutrino is the 3+1 model.
- PMNS matrix becomes 4 x 4
 - Three new mixing angles: θ_{14} , θ_{24} and θ_{34}
 - Two new CP phases: $\delta_{\rm 14}$ and $\delta_{\rm 24}$
- Three new mass-splittings, but only one is independent.
 - Δm²₄₁

MINOS+ Four Flavour

Oscillation Analysis

- MINOS is sensitive to three of the sterile oscillation parameters.
- Muon neutrino disappearance: θ_{24} and Δm_{41}^2
 - Measured with muon neutrino charged-current events. $|U_{\mu4}|^2 = \sin^2 \theta_{24} \cos^2 \theta_{14}$
- Active neutrino disappearance: θ_{24} , θ_{34} and Δm_{41}^2
 - Measured using neutral-current interactions.
 - Sensitivity reduced compared to CC due to worse energy resolution and lower cross-section.
- Oscillations can cause effects in both detectors depending on the value of Δm^2_{41}

Analysis Method

- The previous MINOS sterile neutrino analysis used the ratio of the Far and Near spectra.
 - Can't use the ND to tune the MC like in our three-flavour anaylsis.
 - Many systematics cancel in the ratio.

[–]ar / Near Ratio (imes 10^{–3})

0.8

0.6

0.4

0.2

0

MINOS+ Preliminary

. ∆m²₂₁ = 7.54 x10⁻⁵ eV²

 $\Delta m_{32}^2 = 2.37 \text{ x} 10^{-3} \text{ eV}^2$

10

 $sin^{2}(\theta_{12}) = 0.022$

 $\sin^2(\theta_{22}) = 0.41$

• However, uncertainty in the ratio was dominated by FD statistics.

CC selection

30

3-flavour prediction

10.56×10²⁰ POT MINOS

5.80×10²⁰ POT MINOS+

20

Reconstructed Energy (GeV)

v mode

Systematic uncertainty

Analysis Method

- The previous MINOS sterile neutrino analysis used the ratio of the Far and Near spectra.
 - Can't use the ND to tune the MC like in our three-flavour anaylsis.
 - Many systematics cancel in the ratio.

 $0.8 - \Delta m_{21}^2 = 7.54 \times 10^{-5} \text{ eV}^2$

 $sin^{2}(\theta_{12}) = 0.022$

 $sin^{2}(\theta_{22}) = 0.41$

 $\Delta m_{32}^2 = 2.37 \text{ x} 10^{-3} \text{ eV}^2$

10

Far / Near (\times 10⁻³)

0.6

0.4

0.2

0<u>.</u>

MINOS+ Preliminary

Sample Parameters: $\theta_{24} = 0.2$, $\Delta m_{41}^2 = 80.0 \text{ eV}^2$

10.56×10²⁰ POT MINOS

5.80×10²⁰ POT MINOS+

20

Reconstructed Energy (GeV)

v., mode

3-flavour prediction

3+1-flavour prediction

Systematic uncertainty

CC selection

40

30

• Also, high mass-splitting effect cancels in the ratio.

The Two Detector Fit

- We have now moved to a simultaneous two detector fit.
 - Use the a-priori flux prediction from MINERvA [1]
- We use a single covariance matrix that encapsulates the correlations between the systematic uncertainties.
 - This still enables us to have some cancellation of the systematic uncertainties without using the Far-over-Near ratio.

		Uncertainty source	Maximum uncertainty (%)			
•	Consider a total of 44		ND CC	FD CC	ND NC	FD NC
		Hadron production	7%	7%	7%	7%
	systematic uncertainties	Cross-sections	10%	10%	11%	13%
		Backgrounds	1%	1%	10%	5%
	across the different	Energy scale	10%	8%	20%	18%
	event selections	Other	6%	3%	6%	3%
		Total	15%	12%	25%	20%

[1] L. Aliagia, et al, Phys. Rev. D 94, 092005, 2016

NC Systematic Uncertainties

NC Systematic Uncertainties

CC Systematic Uncertainties

Sensitivity

• Much improved sensitivity for $\Delta m_{41}^2 > 10 \text{ eV}^2$ with new method

Detector Contributions

- Very high stats in the ND clearly systematics limited.
- Can see the effect of the correlations in the systematic uncertainties.

The Fit Procedure

 Perform a maximum likelihood fit to minimise the following for both the CC and NC samples

$$\chi^2 = \sum_{i=1}^{N} \sum_{j=1}^{N} (x_i - \mu_i) [\mathbf{V}^{-1}]_{ij} (x_j - \mu_j) + \text{const}$$

- We fit for Δm_{41}^2 , Δm_{32}^2 , θ_{23} , θ_{24} and θ_{34}
- Global best fit values are used for Δm_{21}^2 , θ_{12} and θ_{13}
- The other parameters have a negligible effect on the analysis and are set to zero: θ_{14} , δ_{13} , δ_{14} and δ_{24}

Selected NC Interactions

• The first step is to select the neutral current interactions.

Selected CC Interactions

• Charged current interactions are selected from those that do not pass the neutral current selection.

Exclusion Contour

- For each bin in $(\Delta m_{41}^2, \theta_{24})$ space, minimise with respect to the other parameters.
- Limit constructed using the Feldman-Cousins approach.
- Strong limit on θ₂₄ set over seven orders of magnitude in Δm²₄₁.
- Limit falls within expected 2σ sensitivity band.

Comparison with Other Experiments

- Comparison with various experiments
 - Very strong exclusion limit.
- Gariazzo region is from a global fit.
 - Shown under the assumption $|U_{e4}| = 0.023$

Comparing to the LSND phase-space

- MINOS/MINOS+ has main sensitivity to $|U_{\mu4}|^2 = \sin^2 \theta_{24} \cos^2 \theta_{14}$
- We want to be able to compare to LSND / MiniBooNE that measure $4|U_{e4}|^2|U_{\mu4}|^2 = \sin^2 2\theta_{14} \sin^2 \theta_{24} \equiv \sin^2 2\theta_{\mu e}$
- Reactor experiments such as Daya Bay measure $|U_{e4}|^2 = \sin^2 \theta_{14}$
- By combining MINOS/MINOS+ with Daya Bay (and Bugey-3) we can populate the same phase-space.

Combination with Daya Bay

- Performed preliminary new combination with Daya Bay.
- Daya Bay data remains the same as in the previous combination
 - Phys. Rev. Lett. 117, 151801
- Re-compute new MINOS+ limit using the CLs technique.
 - Agrees well with the Feldman-Cousins procedure.

Combination with Daya Bay

- Preliminary result of the ongoing collaborative effort between MINOS+/MINOS and Daya Bay (with inclusion of Bugey-3 data)
- Significant increase in the constraint at Δm²₄₁ > 10 eV² due to two-detector fit method, as expected
- Final combination with a larger
 Daya Bay data set is planned

Summary

- MINOS/MINOS+ sets a new strong limit on the existence of a sterile neutrino over seven orders of magnitude in Δm_{41}^2 .
- Further increases the tension between appearance and disappearance searches.
- Analysis of the other 50% of MINOS+ data underway.
- Corresponding searches using muon antineutrino disappearance and electron neutrino appearance under development.

Thank You Any Questions?

Sterile Antineutrino Sensitivity

- Select CC muon antineutrino interactions from:
 - The antineutrino component of the neutrino mode beam
 - The antineutrino beam

Large Extra Dimensions

Sterile Neutrino Appearance

Detector Details

- Magnetized steel plates with scintillator strip and PMT instrumentation
 - Steel thickness: 2.54 cm
 - Intraplane distance: 5.96 cm
- Magnetized with a B-field ~1.3T
 - Range and curvature energy estimation for μ tra
 - Distinguish between μ+ and μ- tracks

U V U V U V U V U V

Global Fits including MINOS 2016

Gariazzo et al. (2017). arXiv: 1703.00860 [hep-ex]

Near Detector Event Pile Up

 High event rate in the ND can cause the reconstruction to mistakenly separate showers from the main event.

Use a preselection to clean up these events

MINOS+ Data Stability

• MINOS / MINOS+ FD data rate over the two year period.

Uniform event distribution across the FD for both CC and NC interactions.

CC kNN Inputs

Analysis Flow Chart

Signal Injection Test

- Tested signal injection at the global best fit point.
- This shows what MINOS+ should see if a sterile neutrino exists at

 $\theta_{24} = 0.15$ $\Delta m_{41}^2 = 1.65 \text{ eV}^2$

 See allowed region with and without systematic fluctuations.

Combination Technique

For each point in the parameter space, combine $\Delta \chi^2$ distributions

Combination Technique

• For fixed Δm_{41}^2 , compute combined limit in the appearance parameter space

