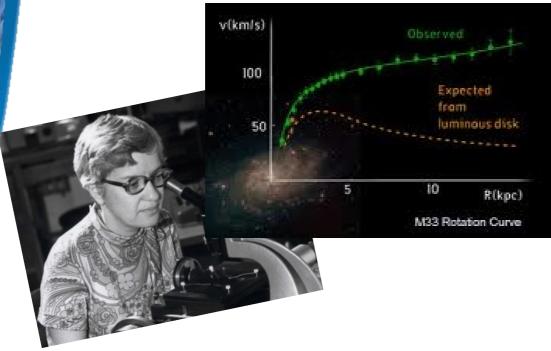
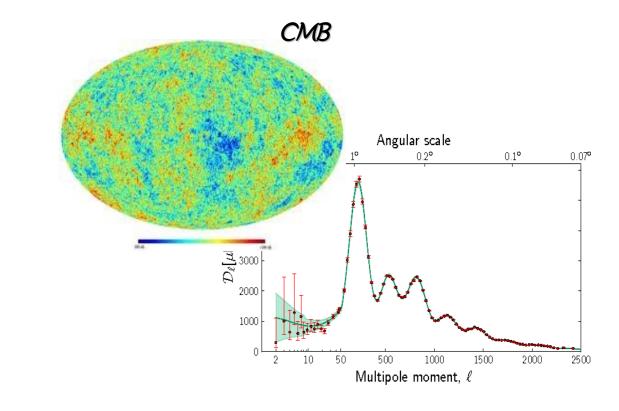


Pseudoscalar Portal to Dark Matter: Beyond Simplified Models

Jose Miguel No King's College London


J.M.N. PRD 93 (RC) 031701 (1509.01110) D. Goncalves, P. Machado, J.M.N. 1611.04593 M. Fairbairn, J.M.N., P. Tunney, 1704.xxxxx

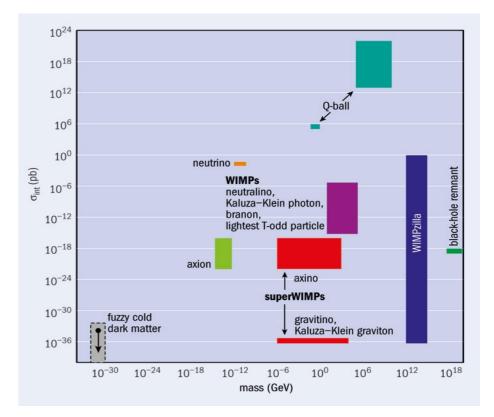

UNIVERSITY COLLEGE LONDON 24/03/17

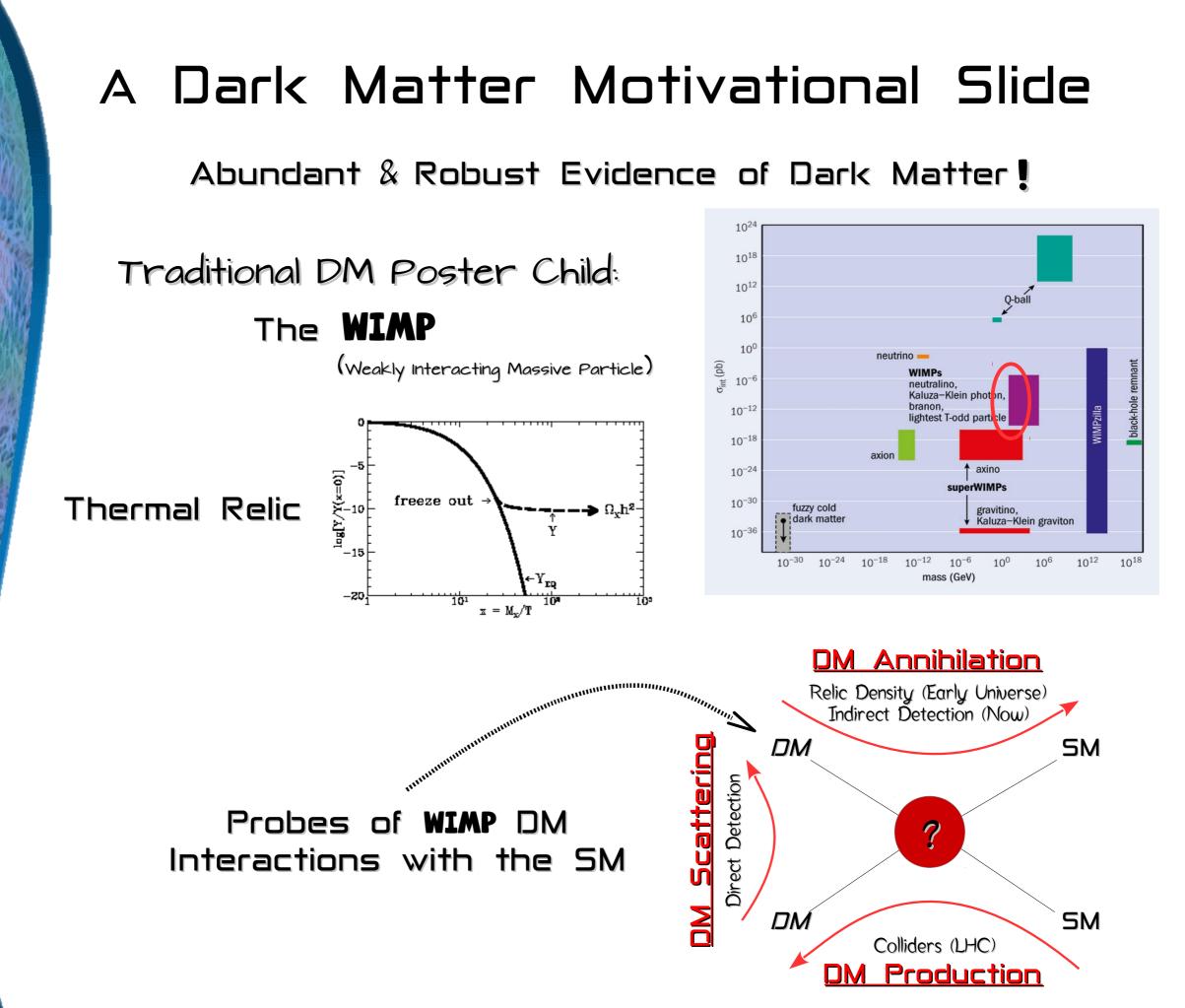
A Dark Matter Motivational Slide


Abundant & Robust Evidence of Dark Matter !

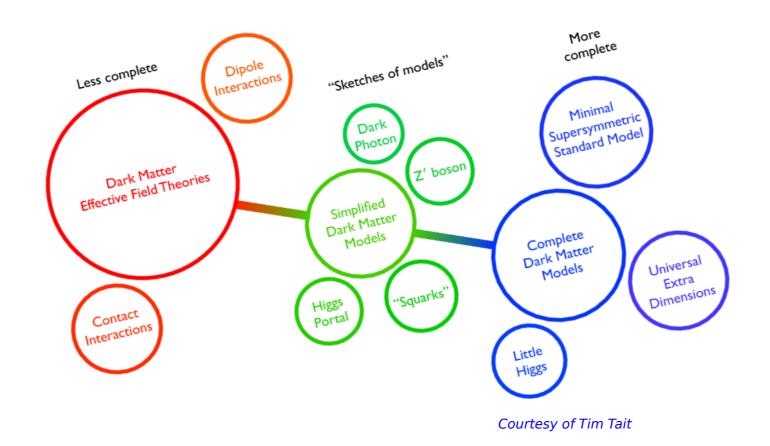
Galaxy Rotation Curves

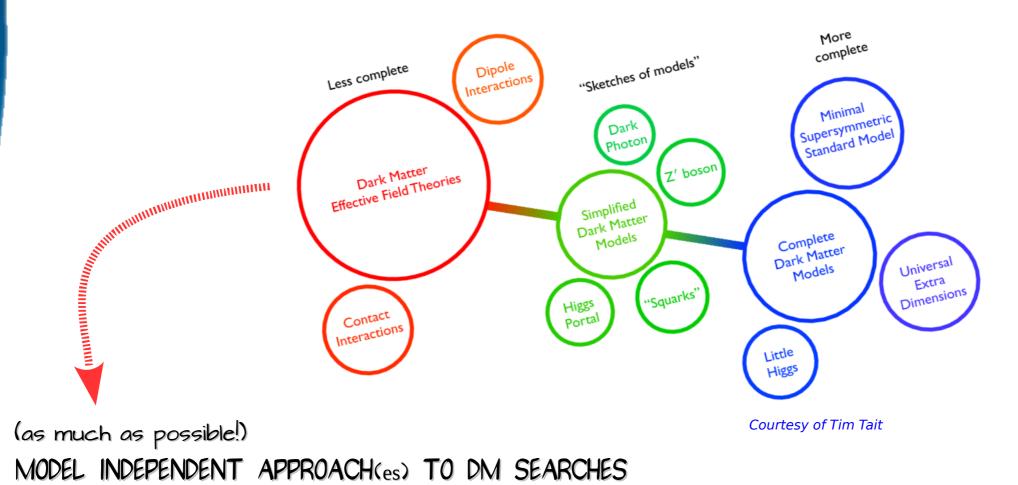
Gravitational Lensing


Bullet Cluster


A Dark Matter Motivational Slide

Abundant & Robust Evidence of Dark Matter !


What is it? No idea...



A Dark Matter Motivational Slide Abundant & Robust Evidence of Dark Matter ! 10²⁴ 1018 Traditional DM Poster Child: 1012 Q-ball The **WIMP** 10^{6} 10⁰ neutrino 🛑 (Weakly Interacting Massive Particle) α_{int} (pb) WIMPs neutralino, Kaluza-Klein phot branon, 10^{-12} lightest T-odd particle 10^{-18} axion -5 [(0=x)⁻¹⁰ -15 axino 10^{-24} superWIMPs Thermal Relic freeze out 10-30 fuzzy cold Ω_vh² gravitino, dark matter Kaluza-Klein graviton Y 10-36 10^{-30} 10^{-24} 10^{-18} 10^{-12} 10^{-6} 10⁶ 1012 10⁰ 10¹⁸ mass (GeV) ĽQ -201101 $x = M_x/T$

EFT

• Add Only DM as new particle ~

simple!

- Interactions between DM & SM via non-renormalizable operators
- Valid when M * E Relevant (experimental) Energy Scale
 Effective Scale of New Physics Connecting DM & SM

EFT

Consider DM in a HIDDEN SECTOR Singlet under SM Gauge Interactions Table 1 Operators for Dirac DM

Label	Operator	Usual coefficient	Dimension
Ø _{D1}	x̄xq̄q	m_q/M_{*}^{3}	6
$\mathcal{O}_{\mathrm{D2}}$	$\bar{\chi}i\gamma_5\chi\bar{q}q$	m_q/M_*^3	6
\mathcal{O}_{D3}	$\bar{\chi} \chi \bar{q} i \gamma_5 q$	m_q/M_*^3	6
$\mathcal{O}_{\mathrm{D4}}$	$\bar{\chi}i\gamma_5\chi\bar{q}i\gamma_5q$	m_q/M_*^3	6
$\mathcal{O}_{\mathrm{D5}}$	$\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}q$	$1/M_{*}^{2}$	6
$\mathcal{O}_{\rm D6}$	$\bar{\chi}\gamma^{\mu}\gamma_5\chi\bar{q}\gamma_{\mu}q$	$1/M_{*}^{2}$	6
$\mathcal{O}_{\mathrm{D7}}$	$\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}\gamma_{5}q$	$1/M_{*}^{2}$	6
$\mathcal{O}_{\mathrm{D8}}$	$\bar{\chi}\gamma^{\mu}\gamma_{5}\chi\bar{q}\gamma_{\mu}\gamma_{5}q$	$1/M_{*}^{2}$	6
\mathscr{O}_{D9}	$ar{\chi}\sigma^{\mu u}\chiar{q}\sigma_{\mu u}q$	$1/M_{*}^{2}$	6
$\mathcal{O}_{\mathrm{D10}}$	$\bar{\chi}i\sigma^{\mu u}\gamma_5\chi\bar{q}\sigma_{\mu u}q$	$1/M_{*}^{2}$	6
Ø _{D11}	$\bar{\chi}\chi G_{\mu u}G^{\mu u}$	$\alpha_S/4M_*^3$	7
$\mathcal{O}_{\mathrm{D12}}$	$\bar{\chi}\gamma_5\chi G_{\mu u}G^{\mu u}$	$i\alpha_S/4M_*^3$	7
0 _{D13}	$\bar{\chi}\chi G_{\mu u} ilde{G}^{\mu u}$	$\alpha_S/4M_*^3$	7
ℓ ^D _{D14}	$\bar{\chi}\gamma_5\chi G_{\mu u} ilde{G}^{\mu u}$	$i\alpha_S/4M_*^3$	7

De Simone, Jacques, Eur. Phys. J. C**76** (2016) 7, 367

EFT

- Consider DM in a HIDDEN SECTOR Singlet under SM Gauge Interactions
- Valid when $M_* \gg E$

DM DIRECT DETECTION E ~ MeV 🗸

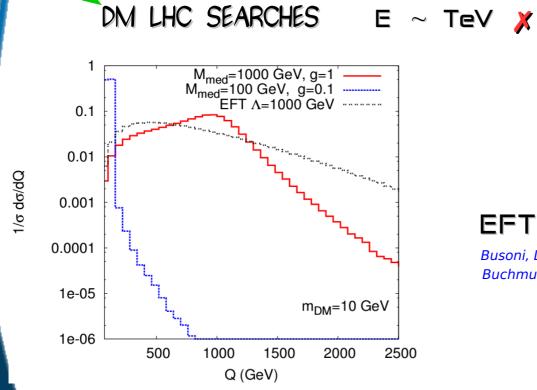


Table 1 Operators for Dirac DM

Label	Operator	Usual coefficient	Dimension
$\mathcal{O}_{\mathrm{D1}}$	x̄xq̄q	m_q/M_*^3	6
$\mathcal{O}_{\mathrm{D2}}$	$\bar{\chi}i\gamma_5\chi\bar{q}q$	m_q/M_*^3	6
$\mathcal{O}_{\mathrm{D3}}$	$\bar{\chi} \chi \bar{q} i \gamma_5 q$	m_q/M_*^3	6
$\mathcal{O}_{\mathrm{D4}}$	$\bar{\chi}i\gamma_5\chi\bar{q}i\gamma_5q$	m_q / M_*^3	6
$\mathcal{O}_{\mathrm{D5}}$	$ar{\chi}\gamma^{\mu}\chiar{q}\gamma_{\mu}q$	$1/M_{*}^{2}$	6
$\mathcal{O}_{\rm D6}$	$\bar{\chi}\gamma^{\mu}\gamma_5\chi\bar{q}\gamma_{\mu}q$	$1/M_{*}^{2}$	6
$\mathcal{O}_{\mathrm{D7}}$	$\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}\gamma_{5}q$	$1/M_{*}^{2}$	6
$\mathcal{O}_{\mathrm{D8}}$	$\bar{\chi}\gamma^{\mu}\gamma_{5}\chi\bar{q}\gamma_{\mu}\gamma_{5}q$	$1/M_{*}^{2}$	6
\mathcal{O}_{D9}	$ar{\chi}\sigma^{\mu u}\chiar{q}\sigma_{\mu u}q$	$1/M_{*}^{2}$	6
\mathcal{O}_{D10}	$ar{\chi} i \sigma^{\mu u} \gamma_5 \chi ar{q} \sigma_{\mu u} q$	$1/M_{*}^{2}$	6
\mathcal{O}_{D11}	$\bar{\chi}\chi G_{\mu u}G^{\mu u}$	$\alpha_S/4M_*^3$	7
\mathcal{O}_{D12}	$\bar{\chi}\gamma_5\chi G_{\mu u}G^{\mu u}$	$i\alpha_S/4M_*^3$	7
Ø _{D13}	$\bar{\chi}\chi G_{\mu u} ilde{G}^{\mu u}$	$\alpha_S/4M_*^3$	7
0 _{D14}	$\bar{\chi}\gamma_5\chi G_{\mu u}\tilde{G}^{\mu u}$	$i\alpha_S/4M_*^3$	7

De Simone, Jacques, Eur. Phys. J. C76 (2016) 7, 367

EFT fails when DM - SM Mediator Accessible

Busoni, De Simone, Morgante, Riotto, Phys. Lett. B**728** (2014) 412 Buchmueller, Dolan, McCabe, JHEP **01** (2014) 025

➡ Consider DM in a HIDDEN SECTOR Singlet under SM Gauge Interactions

SOLUTION :

- "Open up" effective interaction $\mathcal{L} \supset Z'_{\mu} \left(g_{\text{SM}} \bar{q} \gamma^{\mu} q + g_{\chi} \bar{\chi} \gamma^{\mu} \chi \right)$
- Add DM & Mediator as new particles

Label	Operator	Usual coefficient	Dimensior
\mathcal{O}_{D1}	x̄xq̄q	m_q/M_*^3	6
$\mathcal{O}_{\mathrm{D2}}$	$\bar{\chi}i\gamma_5\chi\bar{q}q$	m_q/M_*^3	6
\mathcal{O}_{D3}	$\bar{\chi} \chi \bar{q} i \gamma_5 q$	m_q/M_*^3	6
$\mathcal{O}_{\mathrm{D4}}$	<u> </u>	m_q / M_*^3	6
\mathcal{O}_{D5}	$\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}q$	$1/M_{*}^{2}$	6
$\mathcal{O}_{\mathrm{D6}}$	$\bar{\chi}\gamma^{\mu}\gamma_5\chi\bar{q}\gamma_{\mu}q$	$1/M_{*}^{2}$	6
$\mathcal{O}_{\mathrm{D7}}$	$\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}\gamma_{5}q$	$1/M_{*}^{2}$	6
$\mathcal{O}_{\mathrm{D8}}$	$\bar{\chi}\gamma^{\mu}\gamma_{5}\chi\bar{q}\gamma_{\mu}\gamma_{5}q$	$1/M_{*}^{2}$	6
\mathcal{O}_{D9}	$ar{\chi}\sigma^{\mu u}\chiar{q}\sigma_{\mu u}q$	$1/M_{*}^{2}$	6
$\mathcal{O}_{\mathrm{D10}}$	$ar{\chi} i \sigma^{\mu u} \gamma_5 \chi ar{q} \sigma_{\mu u} q$	$1/M_{*}^{2}$	6
\mathcal{O}_{D11}	$\bar{\chi}\chi G_{\mu u}G^{\mu u}$	$\alpha_S/4M_*^3$	7
\mathcal{O}_{D12}	$\bar{\chi}\gamma_5\chi G_{\mu u}G^{\mu u}$	$i\alpha_S/4M_*^3$	7
0°D13	$ar{\chi}\chi G_{\mu u} ilde{G}^{\mu u}$	$\alpha_S/4M_*^3$	7
Ø _{D14}	$\bar{\chi}\gamma_5\chi G_{\mu u}\tilde{G}^{\mu u}$	$i\alpha_S/4M_*^3$	7

De Simone, Jacques, Eur. Phys. J. C76 (2016) 7, 367

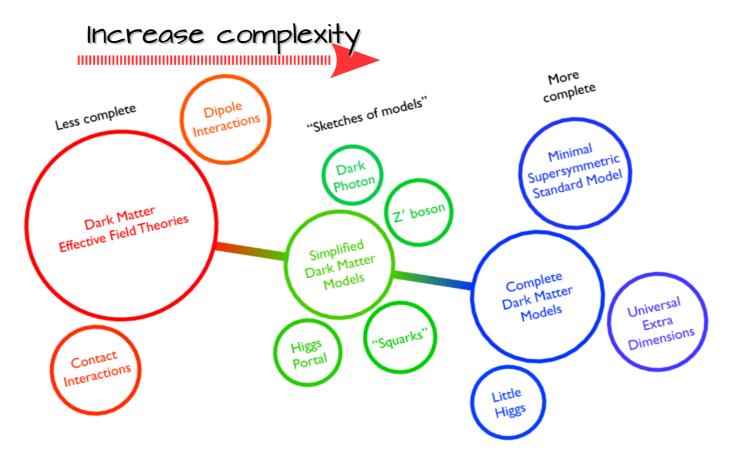
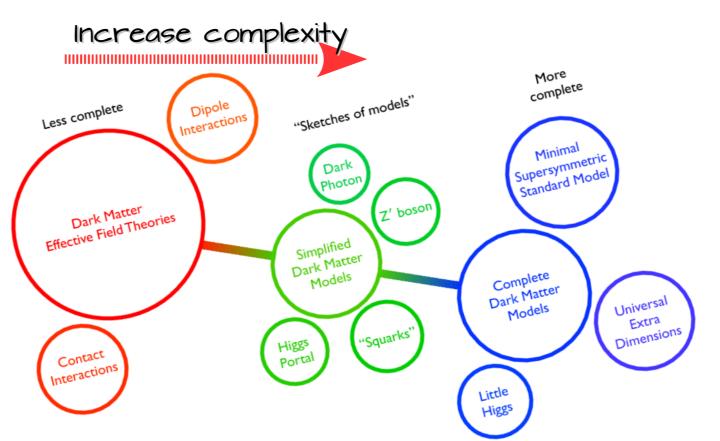

EFT fails when DM - SM Mediator Accessible

Table 1 Operators for Dirac DM


Busoni, De Simone, Morgante, Riotto, Phys. Lett. B**728** (2014) 412 Buchmueller, Dolan, McCabe, JHEP **01** (2014) 025

Let's add it!

Rationale of Simplified Models for Dark Matter Phenomenology

Rationale of Simplified Models for Dark Matter Phenomenology

wish list Dark Matter Pheno. Models

- Simple enough as sensible unit within (more) complicated model
- Complete enough to accurately capture relevant physics

Everything

should

l focus on Dirac Fermion DM

Shoemaker, Vecchi, Phys. Rev. D**86** (2012) 015023 Frandsen, Kahlhoefer, Preston, Sarkar, Schmidt-Hoberg, JHEP**1207** (2012) 123 Buckley, Feld, Goncalves, Phys. Rev. D**91** (2015) 015017

Vector/Axial-Vector Mediator

$$\mathcal{L}_V \supset V_\mu \left(\sum_q \bar{q} \gamma^\mu (g_{\rm SM}^V + g_{\rm SM}^A \gamma^5) q + \bar{\chi} \gamma^\mu (g_\chi^V + g_\chi^A \gamma^5) \chi \right)$$

Scalar Mediator

Pseudoscalar Mediator

$$\mathcal{L}_s = \bar{\chi}(i\partial \!\!\!/ - m_\chi)\chi + \frac{1}{2}(\partial_\mu s)^2 - \frac{m_s^2}{2}s^2 - g_\chi s \bar{\chi}\chi - g_{\rm SM} s \sum_q \frac{y_q}{\sqrt{2}} \bar{q}q$$

$$\mathcal{L}_{a} = \bar{\chi}(i\partial \!\!\!/ - m_{\chi})\chi + \frac{1}{2}(\partial_{\mu}a)^{2} - \frac{m_{a}^{2}}{2}a^{2}$$
$$- ig_{\chi} a \bar{\chi}\gamma^{5}\chi - ig_{\mathrm{SM}} a \sum_{q} \frac{y_{q}}{\sqrt{2}} \bar{q}\gamma^{5}q$$

Models defined after EWSB

focus on Dirac Fermion DM + Spin - 0 Mediator

Shoemaker, Vecchi, Phys. Rev. D86 (2012) 015023 Frandsen, Kahlhoefer, Preston, Sarkar, Schmidt-Hoberg, JHEP1207 (2012) 123 Buckley, Feld, Goncalves, Phys. Rev. D91 (2015) 015017

Vector/Axial-Vector Mediator

$$\mathcal{L}_V \supset V_\mu \left(\sum_q \bar{q} \gamma^\mu (g_{\rm SM}^V + g_{\rm SM}^A \gamma^5) q + \bar{\chi} \gamma^\mu (g_\chi^V + g_\chi^A \gamma^5) \chi \right)$$

Scalar Mediator Pseudoscalar Mediator $\mathcal{L}_{s} = \bar{\chi}(i\partial \!\!\!/ - m_{\chi})\chi + \frac{1}{2}(\partial_{\mu}s)^{2} - \frac{m_{s}^{2}}{2}s^{2} \qquad \mathcal{L}_{a} = \bar{\chi}(i\partial \!\!\!/ - m_{\chi})\chi + \frac{1}{2}(\partial_{\mu}a)^{2} - \frac{m_{a}^{2}}{2}a^{2}$ $- ig_{\chi} a \, \bar{\chi} \gamma^5 \chi - ig_{\rm SM} \, a \sum_{a} \frac{y_q}{\sqrt{2}} \, \bar{q} \gamma^5 q$ $- g_{\chi} s \, \bar{\chi} \chi - g_{\rm SM} \, s \sum_{\alpha} \frac{y_q}{\sqrt{2}} \, \bar{q} q$

focus on Dirac Fermion DM + Spin - 0 Mediator

Shoemaker, Vecchi, Phys. Rev. D86 (2012) 015023 Frandsen, Kahlhoefer, Preston, Sarkar, Schmidt-Hoberg, JHEP1207 (2012) 123 Buckley, Feld, Goncalves, Phys. Rev. D91 (2015) 015017

Vector/Axial-Vector Mediator

$$\mathcal{L}_V \supset V_\mu \left(\sum_q \bar{q} \gamma^\mu (g_{\rm SM}^V + g_{\rm SM}^A \gamma^5) q + \bar{\chi} \gamma^\mu (g_\chi^V + g_\chi^A \gamma^5) \chi \right)$$

$$\begin{aligned} \text{Scalar Mediator} & \text{Pseudoscalar Mediator} \\ \mathcal{L}_{s} &= \bar{\chi}(i\partial \!\!\!/ - m_{\chi})\chi + \frac{1}{2}(\partial_{\mu}s)^{2} - \frac{m_{s}^{2}}{2}s^{2} \\ &- g_{\chi}s\,\bar{\chi}\chi - g_{\text{SM}}s\sum_{q}\frac{y_{q}}{\sqrt{2}}\bar{q}q \end{aligned} \qquad \begin{aligned} \mathcal{L}_{a} &= \bar{\chi}(i\partial \!\!\!/ - m_{\chi})\chi + \frac{1}{2}(\partial_{\mu}a)^{2} - \frac{m_{a}^{2}}{2}a^{2} \\ &- ig_{\chi}a\,\bar{\chi}\gamma^{5}\chi - ig_{\text{SM}}a\sum_{q}\frac{y_{q}}{\sqrt{2}}\bar{q}\gamma^{5}q \end{aligned}$$

KEY QUESTION

Complete enough to accurately describe DM phenomenology?

focus on Dirac Fermion DM + Spin - 0 Mediator

Shoemaker, Vecchi, Phys. Rev. D86 (2012) 015023 Frandsen, Kahlhoefer, Preston, Sarkar, Schmidt-Hoberg, JHEP1207 (2012) 123 Buckley, Feld, Goncalves, Phys. Rev. D91 (2015) 015017

Vector/Axial-Vector Mediator

$$\mathcal{L}_V \supset V_\mu \left(\sum_q \bar{q} \gamma^\mu (g_{\rm SM}^V + g_{\rm SM}^A \gamma^5) q + \bar{\chi} \gamma^\mu (g_\chi^V + g_\chi^A \gamma^5) \chi \right)$$

Scalar MediatorPseudoscalar Mediator
$$\mathcal{L}_s = \bar{\chi}(i\partial - m_{\chi})\chi + \frac{1}{2}(\partial_{\mu}s)^2 - \frac{m_s^2}{2}s^2$$
 $\mathcal{L}_a = \bar{\chi}(i\partial - m_{\chi})\chi + \frac{1}{2}(\partial_{\mu}a)^2 - \frac{m_a^2}{2}a^2$ $- g_{\chi}s \bar{\chi}\chi - g_{\rm SM}s \sum_q \frac{y_q}{\sqrt{2}} \bar{q}q$ $- ig_{\chi}a \bar{\chi}\gamma^5\chi - ig_{\rm SM}a \sum_q \frac{y_q}{\sqrt{2}} \bar{q}\gamma^5q$

KEY QUESTION

Complete enough to accurately describe DM phenomenology?

$$\begin{aligned} \text{Scalar Mediator} & \text{Pseudoscalar Mediator} \\ \mathcal{L}_{s} &= \bar{\chi}(i\partial - m_{\chi})\chi + \frac{1}{2}(\partial_{\mu}s)^{2} - \frac{m_{s}^{2}}{2}s^{2} \\ &- g_{\chi}s\,\bar{\chi}\chi - g_{\text{SM}}s\sum_{q}\frac{y_{q}}{\sqrt{2}}\bar{q}q \end{aligned} \qquad \begin{aligned} \mathcal{L}_{a} &= \bar{\chi}(i\partial - m_{\chi})\chi + \frac{1}{2}(\partial_{\mu}a)^{2} - \frac{m_{a}^{2}}{2}a^{2} \\ &- ig_{\chi}a\,\bar{\chi}\gamma^{5}\chi - ig_{\text{SM}}a\sum_{q}\frac{y_{q}}{\sqrt{2}}\bar{q}\gamma^{5}q \end{aligned}$$

The Issue is $SU(2)_{\rm L} \times U(1)_{\rm Y}$ Gauge Invariance

$$\begin{aligned} \text{Scalar Mediator} & \text{Pseudoscalar Mediator} \\ \mathcal{L}_{s} &= \bar{\chi}(i\partial - m_{\chi})\chi + \frac{1}{2}(\partial_{\mu}s)^{2} - \frac{m_{s}^{2}}{2}s^{2} \\ &- g_{\chi}s\,\bar{\chi}\chi - g_{\text{SM}}s\sum_{q}\frac{y_{q}}{\sqrt{2}}\bar{q}q \end{aligned} \qquad \begin{aligned} \mathcal{L}_{a} &= \bar{\chi}(i\partial - m_{\chi})\chi + \frac{1}{2}(\partial_{\mu}a)^{2} - \frac{m_{a}^{2}}{2}a^{2} \\ &- ig_{\chi}a\,\bar{\chi}\gamma^{5}\chi - ig_{\text{SM}}a\sum_{q}\frac{y_{q}}{\sqrt{2}}\bar{q}\gamma^{5}q \end{aligned}$$

The Issue is $SU(2)_{\rm L} \times U(1)_{\rm Y}$ Gauge Invariance

$$\mathcal{L}_s = \bar{\chi}(i\partial \!\!\!/ - m_\chi)\chi + \frac{1}{2}(\partial_\mu s)^2 - \frac{m_s^2}{2}s^2 - g_\chi s \bar{\chi}\chi - g_{\rm SM} s \sum_q \frac{y_q}{\sqrt{2}} \bar{q}q$$

DM is SM GAUGE SINGLET MEDIATOR NEEDS $SU(2)_{\rm L} \times U(1)_{\rm Y}$ CHARGE to couple to SM fermions

≤ mixes with SM Higgs boson

 $V = -\frac{1}{2}M_{SS}^2S^2 + \mu_{HS}\Phi^{\dagger}\Phi S + \frac{1}{2}\lambda_{HS}\Phi^{\dagger}\Phi S^2 + \frac{1}{3!}\mu_SS^3 + \frac{1}{4!}\lambda_SS^4$

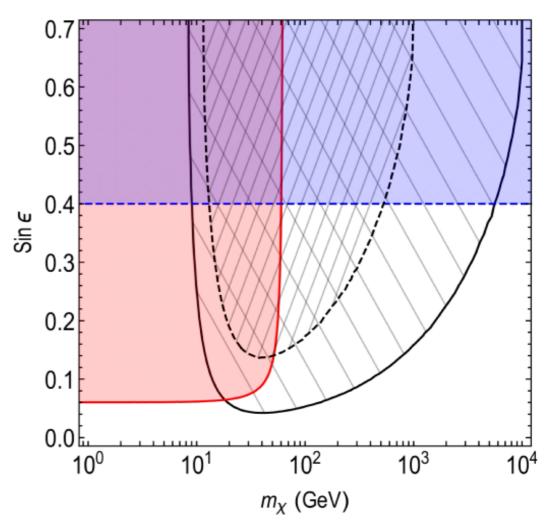
$$\begin{aligned} \text{Scalar Mediator} & \text{Pseudoscalar Mediator} \\ \mathcal{L}_{s} &= \bar{\chi}(i\partial - m_{\chi})\chi + \frac{1}{2}(\partial_{\mu}s)^{2} - \frac{m_{s}^{2}}{2}s^{2} \\ &- g_{\chi}s\,\bar{\chi}\chi - g_{\text{SM}}s\sum_{q}\frac{y_{q}}{\sqrt{2}}\bar{q}q \end{aligned} \qquad \begin{aligned} \mathcal{L}_{a} &= \bar{\chi}(i\partial - m_{\chi})\chi + \frac{1}{2}(\partial_{\mu}a)^{2} - \frac{m_{a}^{2}}{2}a^{2} \\ &- ig_{\chi}a\,\bar{\chi}\gamma^{5}\chi - ig_{\text{SM}}a\sum_{q}\frac{y_{q}}{\sqrt{2}}\bar{q}\gamma^{5}q \end{aligned}$$

The Issue is $SU(2)_{\rm L} \times U(1)_{\rm Y}$ Gauge Invariance

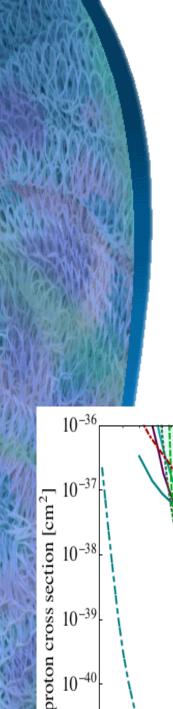
$$\mathcal{L}_s = \bar{\chi}(i\partial \!\!\!/ - m_\chi)\chi + \frac{1}{2}(\partial_\mu s)^2 - \frac{m_s^2}{2}s^2 - g_\chi s \bar{\chi}\chi - g_{\rm SM} s \sum_q \frac{y_q}{\sqrt{2}} \bar{q}q$$

DM is SM GAUGE SINGLET MEDIATOR NEEDS $SU(2)_{\rm L} \times U(1)_{\rm Y}$ CHARGE to couple to SM fermions

$$V = -\frac{1}{2}M_{SS}^2S^2 + \mu_{HS}\Phi^{\dagger}\Phi S + \frac{1}{2}\lambda_{HS}\Phi^{\dagger}\Phi S^2 + \frac{1}{3!}\mu_SS^3 + \frac{1}{4!}\lambda_SS^4$$

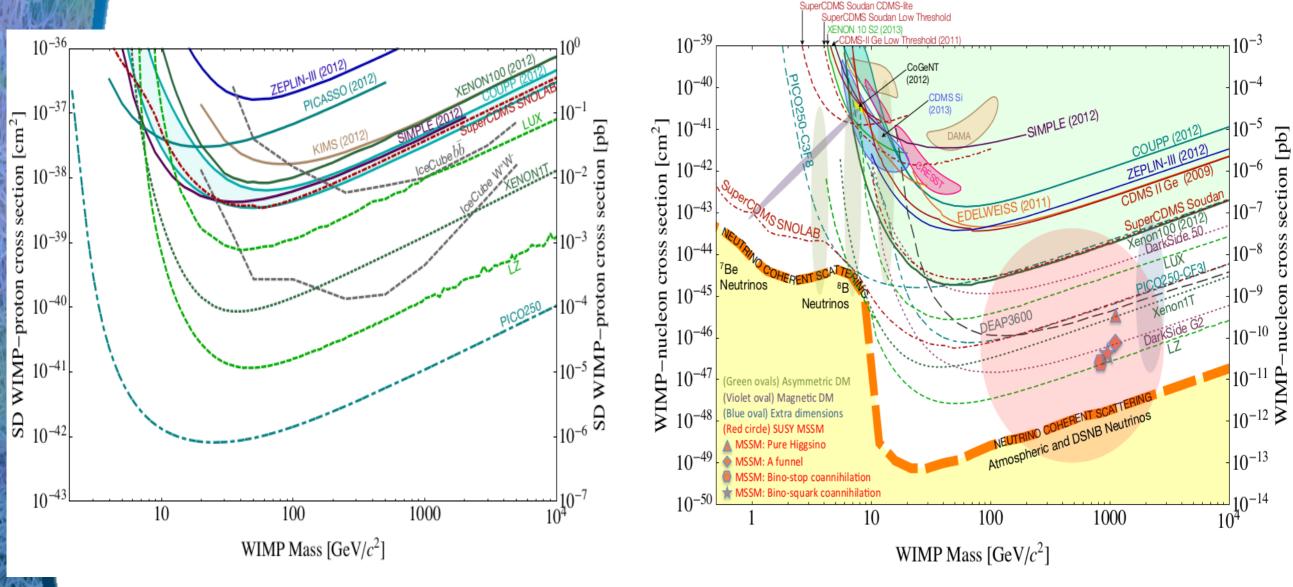

SM Higgs Boson is also a Mediator! (two mediators) Kahlhoefer, Schmidt-Hoberg, Schwetz, Vogl, JHEP1602 (2016) 016 Bell, Busoni, Sanderson, JCAP1703 (2017) 015

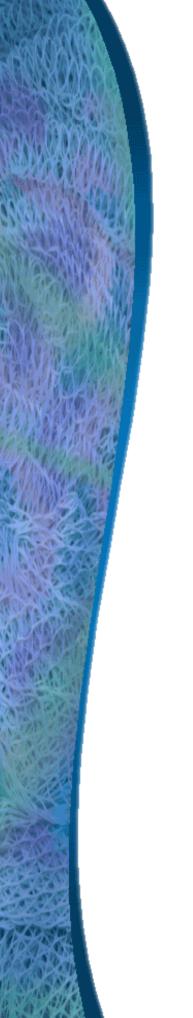
Scalar MediatorPseudoscalar Mediator
$$\mathcal{L}_s = \bar{\chi}(i\partial - m_{\chi})\chi + \frac{1}{2}(\partial_{\mu}s)^2 - \frac{m_s^2}{2}s^2$$
 $\mathcal{L}_a = \bar{\chi}(i\partial - m_{\chi})\chi + \frac{1}{2}(\partial_{\mu}a)^2 - \frac{m_a^2}{2}a^2$ $- g_{\chi}s \bar{\chi}\chi - g_{SM}s \sum_q \frac{y_q}{\sqrt{2}} \bar{q}q$ $- ig_{\chi}a \bar{\chi}\gamma^5\chi - ig_{SM}a \sum_q \frac{y_q}{\sqrt{2}} \bar{q}\gamma^5q$


The Issue is $SU(2)_{\rm L} \times U(1)_{\rm Y}$ Gauge Invariance

$$\mathcal{L}_{s} = \bar{\chi}(i\partial - m_{\chi})\chi + \frac{1}{2}(\partial_{\mu}s)^{2} - \frac{m_{s}^{2}}{2}s^{2}$$
$$- g_{\chi}s\,\bar{\chi}\chi - g_{\mathrm{SM}}s\sum_{q}\frac{y_{q}}{\sqrt{2}}\,\bar{q}q$$

Need two-mediator interplay for correct DM Direct Detection bounds

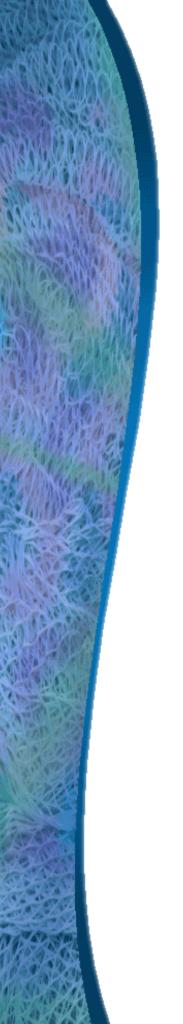

Bell, Busoni, Sanderson, JCAP1703 (2017) 015


Pseudoscalar Case

• DM Direct Detection signatures strongly suppressed w.r.t. Scalar Case

 $\bar{\chi}i\gamma_5\chi\bar{q}i\gamma_5q$ yields Spin-Dependent DM-Nucleon cross section @ Tree-level yields Spin-Independent DM-Nucleon cross section @ One-loop

Pseudoscalar Case not constrained by DM DD



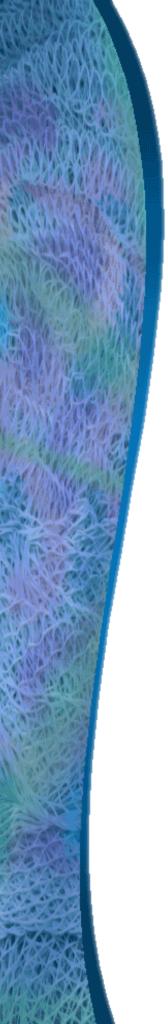
<u>Pseudoscalar Case</u>

• DM Direct Detection signatures strongly suppressed w.r.t. Scalar Case

 $\bar{\chi}i\gamma_5\chi\bar{q}i\gamma_5q$ yields Spin-Dependent DM-Nucleon cross section @ Tree-level yields Spin-Independent DM-Nucleon cross section @ One-loop

LHC Searches are Key for Pseudoscalar Scenario

<u>Pseudoscalar Case</u>


• DM Direct Detection signatures strongly suppressed w.r.t. Scalar Case

 $\bar{\chi}i\gamma_5\chi\bar{q}i\gamma_5q$ yields Spin-Dependent DM-Nucleon cross section @ Tree-level yields Spin-Independent DM-Nucleon cross section @ One-loop

LHC Searches are Key for Pseudoscalar Scenario

• Restoring Gauge Invariance is Not (as) Direct

No pseudoscalar in SM for *a* to mix with.

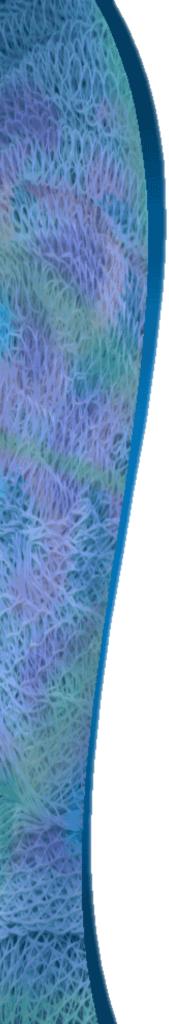
Pseudoscalar Case

• DM Direct Detection signatures strongly suppressed w.r.t. Scalar Case

 $\bar{\chi}i\gamma_5\chi\bar{q}i\gamma_5q$ yields Spin-Dependent DM-Nucleon cross section @ Tree-level yields Spin-Independent DM-Nucleon cross section @ One-loop

LHC Searches are Key for Pseudoscalar Scenario

Restoring Gauge Invariance is Not (as) Direct
 No pseudoscalar in SM
 for a to mix with.


Mixing requires Higgs sector with two Doublets (2HDM) <

 $V_{\text{portal}} = i \kappa a_0 H_1^{\dagger} H_2 + \text{h.c.}$ Nomura, Thaler, Phys. Rev **D79** (2009) 075008

 \Rightarrow 2HDM + a (+ DM)

 $\Rightarrow a, A, H_0, H^{\pm}$ (New Scalars)

Ipek, McKeen, Nelson, Phys. Rev **D90** (2014) 055021 JMN, Phys. Rev **D93** (2016) 031701 Goncalves, Machado, JMN, ArXiv:1611.04593

Pseudoscalar Case

• DM Direct Detection signatures strongly suppressed w.r.t. Scalar Case

 $\bar{\chi}i\gamma_5\chi\bar{q}i\gamma_5q$ yields Spin-Dependent DM-Nucleon cross section @ Tree-level yields Spin-Independent DM-Nucleon cross section @ One-loop

LHC Searches are Key for Pseudoscalar Scenario

Restoring Gauge Invariance is Not (as) Direct
 No pseudoscalar in SM
 for a to mix with.

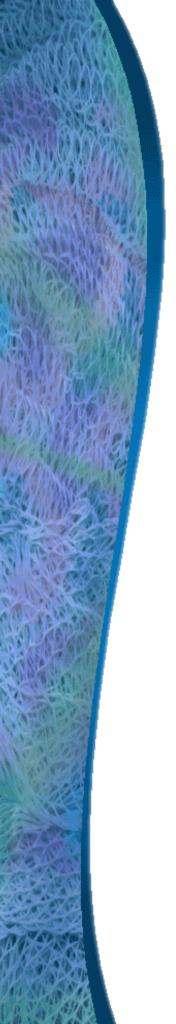
Mixing requires Higgs sector with two Doublets (2HDM) \blacktriangleleft $V_{\text{portal}} = i \kappa a_0 H_1^{\dagger} H_2 + \text{h.c.}$

Nomura, Thaler, Phys. Rev **D79** (2009) 075008

 \Rightarrow 2HDM + a (+ DM)

 $\Rightarrow a, A, H_0, H^{\pm}$ (New Scalars)

Ipek, McKeen, Nelson, Phys. Rev **D90** (2014) 055021 JMN, Phys. Rev **D93** (2016) 031701 Goncalves, Machado, JMN, ArXiv:1611.04593


 \Rightarrow 2HDM (+ DM)

Berlin, Gori, Lin, Wang, Phys. Rev D92 (2015) 015005

 $\Rightarrow a, H_0, H^{\pm}$ (New Scalars) $m_{H_0,H^{\pm}} - m_a \leq \mathcal{O}(\text{few}) \times v$

⇒ Rich(er) DM Sector (+ DM feels SM Gauge Interactions)

 $V_{2\text{HDM}}(H_1, H_2) + g_{\chi} \bar{D}_{\chi_i} H_{1,2} \chi + h.c.$ SU(2) doublet(s)

Pseudoscalar Case

DM Direct Detection signatures strongly suppressed w.r.t. Scalar Case

 $\bar{\chi}i\gamma_5\chi\bar{q}i\gamma_5q$ yields Spin-Dependent DM-Nucleon cross section @ Tree-level yields Spin-Independent DM-Nucleon cross section @ One-loop

LHC Searches are Key for Pseudoscalar Scenario

No pseudoscalar in SM Restoring Gauge Invariance is Not (as) Direct. for *a* to mix with.

Mixing requires Higgs sector with two Doublets (2HDM) 🔫

⇒

 $V_{\text{portal}} = i \kappa a_0 H_1^{\dagger} H_2 + \text{h.c.}$ Nomura, Thaler, Phys. Rev D79 (2009) 075008

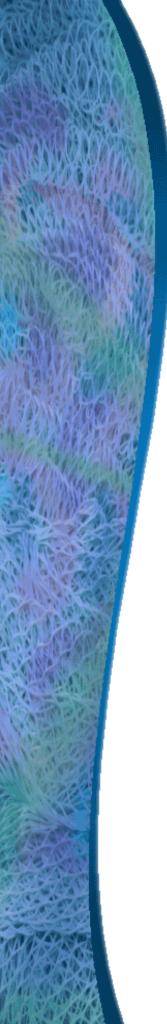
 \Rightarrow 2HDM + a (+ DM)

Ipek, McKeen, Nelson, Phys. Rev **D90** (2014) 055021 JMN, Phys. Rev D93 (2016) 031701 Goncalves, Machado, JMN, ArXiv:1611.04593

2HDM (+DM) \Rightarrow

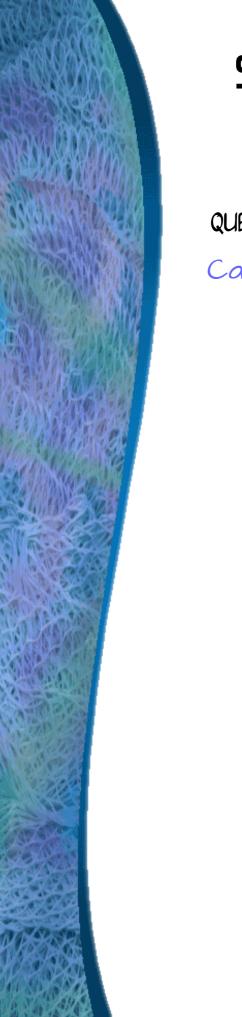
Berlin, Gori, Lin, Wang, Phys. Rev D92 (2015) 015005

New States $a(A, H_0, H^{\pm})$ (New Scalars) d_{h_0}, H^{\pm} (New Scalars) $m_{H_0,H^{\pm}} - m_a \leq \mathcal{O}(\text{few}) \times v$ ⇒ Rich(er) DM Sector (+ DM feels SM Gauge Interactions) $V_{2\text{HDM}}(H_1, H_2) + g_{\chi} D_{\chi_i} H_{1,2} \chi + h.c.$


► SU(2) doublet(s)

 $\mathcal{L}_{a} = \bar{\chi}(i\partial - m_{\chi})\chi + \frac{1}{2}(\partial_{\mu}a)^{2} - \frac{m_{a}^{2}}{2}a^{2}$ $- ig_{\chi}a\,\bar{\chi}\gamma^{5}\chi - ig_{\mathrm{SM}}a\sum_{q}\frac{y_{q}}{\sqrt{2}}\,\bar{q}\gamma^{5}q$

QUESTION


Complete enough to accurately describe DM phenomenology?

 $\mathcal{L}_{a} = \bar{\chi}(i\partial - m_{\chi})\chi + \frac{1}{2}(\partial_{\mu}a)^{2} - \frac{m_{a}^{2}}{2}a^{2}$ $- ig_{\chi}a\,\bar{\chi}\gamma^{5}\chi - ig_{\mathrm{SM}}a\sum_{q}\frac{y_{q}}{\sqrt{2}}\,\bar{q}\gamma^{5}q$

QUESTION

Can the New States A, H_0, H^{\pm} be pushed beyond LHC reach?

 $\mathcal{L}_{a} = \bar{\chi}(i\partial - m_{\chi})\chi + \frac{1}{2}(\partial_{\mu}a)^{2} - \frac{m_{a}^{2}}{2}a^{2}$ $- ig_{\chi} a \bar{\chi}\gamma^{5}\chi - ig_{\rm SM} a \sum_{q} \frac{y_{q}}{\sqrt{2}} \bar{q}\gamma^{5}q$ Can the New States A, H_{0}, H^{\pm} be pushed beyond LHC reach?

Generally...

 $\mathcal{L}_{a} = \bar{\chi}(i\partial - m_{\chi})\chi + \frac{1}{2}(\partial_{\mu}a)^{2} - \frac{m_{a}^{2}}{2}a^{2}$ $- ig_{\chi}a\,\bar{\chi}\gamma^{5}\chi - ig_{\rm SM}\,a\sum_{q}\frac{y_{q}}{\sqrt{2}}\,\bar{q}\gamma^{5}q$ $\int d\mathbf{r} = \mathbf{M} \cdot \mathbf{M} \cdot \mathbf{M} + \mathbf{M} \cdot \mathbf$

Can the New States A, H_0, H^{\pm} be pushed beyond LHC reach?

Mixing between α and Scalar EW Multiplet $\sin \theta$ New States

(Mediator EW Partners)

New States Only Decouple by Closing DM Portal: $\sin\theta\sim \frac{\lambda\,v^2}{M^2-m_a^2}$

2HDM + a Portal to Dark Matter

Visible Sector

$$\begin{split} V_{2\text{HDM}} &= \mu_1^2 |H_1|^2 + \mu_2^2 |H_2|^2 - \mu^2 \left[H_1^{\dagger} H_2 + \text{h.c.} \right] \\ &+ \frac{\lambda_1}{2} |H_1|^4 + \frac{\lambda_2}{2} |H_2|^4 + \lambda_3 |H_1|^2 |H_2|^2 \\ &+ \lambda_4 \left| H_1^{\dagger} H_2 \right|^2 + \frac{\lambda_5}{2} \left[\left(H_1^{\dagger} H_2 \right)^2 + \text{h.c.} \right] \\ &+ \mathcal{L}_{\text{Yuk}} = Y_{1,2}^u \bar{Q}_L q_R^u \tilde{H}_{1,2} + Y_{1,2}^d \bar{Q}_L q_R^d H_{1,2} + Y_{1,2}^\ell \bar{L}_L \ell_R H_{1,2} + h.c. \end{split}$$

Dark Sector

$$V_{\text{Dark}} = m_{\chi} \bar{\chi} \chi + \frac{1}{2} (\partial_{\mu} a_0)^2 + \frac{m_{a_0}^2}{2} a_0^2 + i g_{\chi} a_0 \bar{\chi} \gamma^5 \chi$$

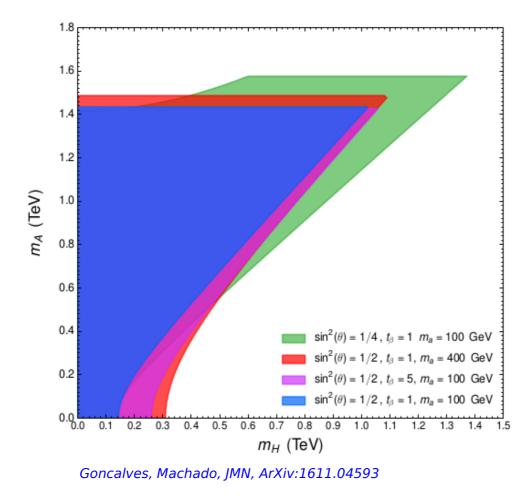
Portal
$$V_{\text{portal}} = i \kappa a_0 H_1^{\dagger} H_2 + \text{h.c.}$$

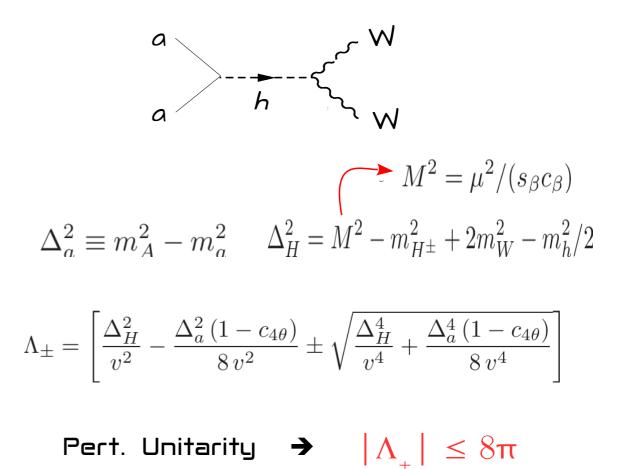
$$H_{j} = \begin{pmatrix} \phi_{j}^{+} \\ \frac{v_{j} + h_{j} + i \eta_{j}}{\sqrt{2}} \end{pmatrix} \quad H^{\pm} = -s_{\beta}\phi_{1}^{\pm} + c_{\beta}\phi_{2}^{\pm} \qquad A_{0} = -s_{\beta}\eta_{1} + c_{\beta}\eta_{2}$$
$$h = -s_{\alpha}h_{1} + c_{\alpha}h_{2} \qquad H_{0} = -c_{\alpha}h_{1} - s_{\alpha}h_{2}$$
$$125 \text{ GeV Higgs}$$

Assume Natural Flavour Conservation in \mathcal{L}_{Yuk}

2HDM + a Portal to Dark Matter

Visible Sector

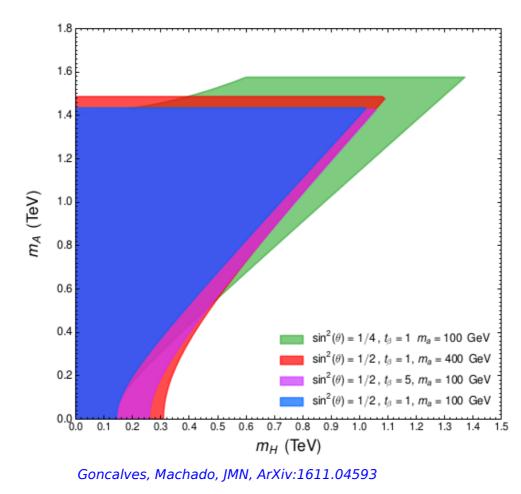

$$V_{2\text{HDM}} = \mu_{1}^{2} |H_{1}|^{2} + \mu_{2}^{2} |H_{2}|^{2} - \mu^{2} \left[H_{1}^{\dagger} H_{2} + \text{h.c.} \right] \\ + \frac{\lambda_{1}}{2} |H_{1}|^{4} + \frac{\lambda_{2}}{2} |H_{2}|^{4} + \lambda_{3} |H_{1}|^{2} |H_{2}|^{2} \\ + \lambda_{4} \left| H_{1}^{\dagger} H_{2} \right|^{2} + \frac{\lambda_{5}}{2} \left[\left(H_{1}^{\dagger} H_{2} \right)^{2} + \text{h.c.} \right] \\ - \mathcal{L}_{\text{Yuk}} = Y_{1,2}^{u} \bar{Q}_{L} q_{R}^{u} \tilde{H}_{1,2} + Y_{1,2}^{d} \bar{Q}_{L} q_{R}^{d} H_{1,2} + Y_{1,2}^{\ell} \bar{L}_{L} \ell_{R} H_{1,2} + h.c. \\ V_{\text{Dark}} = i \kappa a_{0} H_{1}^{\dagger} H_{2} + \text{h.c.} \\ V_{\text{Dark}} \supset i g_{\chi} (c_{\theta} a + s_{\theta} A) \bar{\chi} \gamma^{5} \chi \\ V_{\text{Dark}} \supset i g_{\chi} (c_{\theta} a + s_{\theta} A) \bar{\chi} \gamma^{5} \chi \\ V_{\text{portal}} = \frac{(m_{A}^{2} - m_{a}^{2}) s_{2\theta}}{2 v} (c_{\beta - \alpha} H_{0} - s_{\beta - \alpha} h) \\ \times \left[a A (s_{\theta}^{2} - c_{\theta}^{2}) + (a^{2} - A^{2}) s_{\theta} c_{\theta} \right]$$

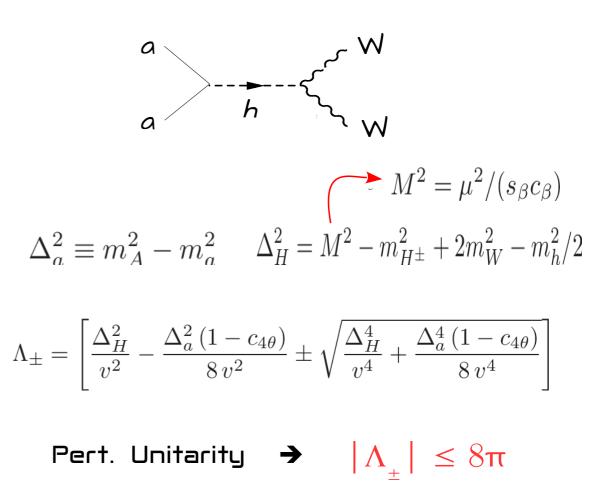


ALLOWED MASS RANGE FOR NEW STATES A H^{\pm} H_0

• Mass Splittings among $A H^{\pm} H_0$ bounded by 2HDM Unitarity Ginzburg, Ivanov, Phys. Rev D72 (2005) 115010 $m_i - m_j \leq O(\text{few}) \times v$

• Mass Splittings
$$m_{A,H_0,H^\pm} \gg m_a$$
 also bounded by Unitarity (if $\sin heta$ is kept fixed)



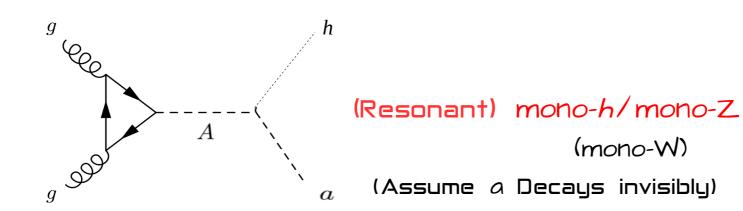


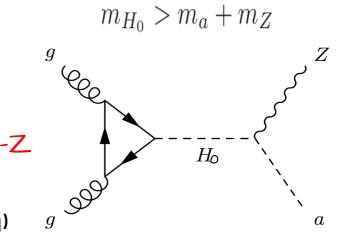
ALLOWED MASS RANGE FOR NEW STATES A H^{\pm} H_0

• Mass Splittings among $A H^{\pm} H_0$ bounded by 2HDM Unitarity Ginzburg, Ivanov, Phys. Rev D72 (2005) 115010 $m_i - m_j \leq O(\text{few}) \times v$

• Mass Splittings $m_{A,H_0,H^\pm} \gg m_a$ also bounded by Unitarity (if $\sin heta$ is kept fixed)

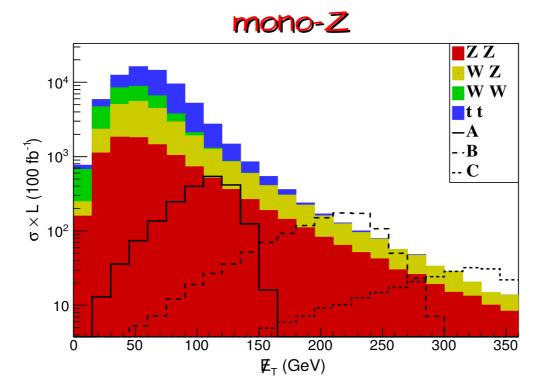
Generally within LHC Reach

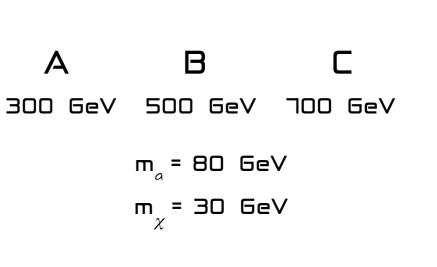

2HDM + a Portal to Dark Matter


LHC SIGNATURES $m_{A,H_0,H^{\pm}} \gg m_a$

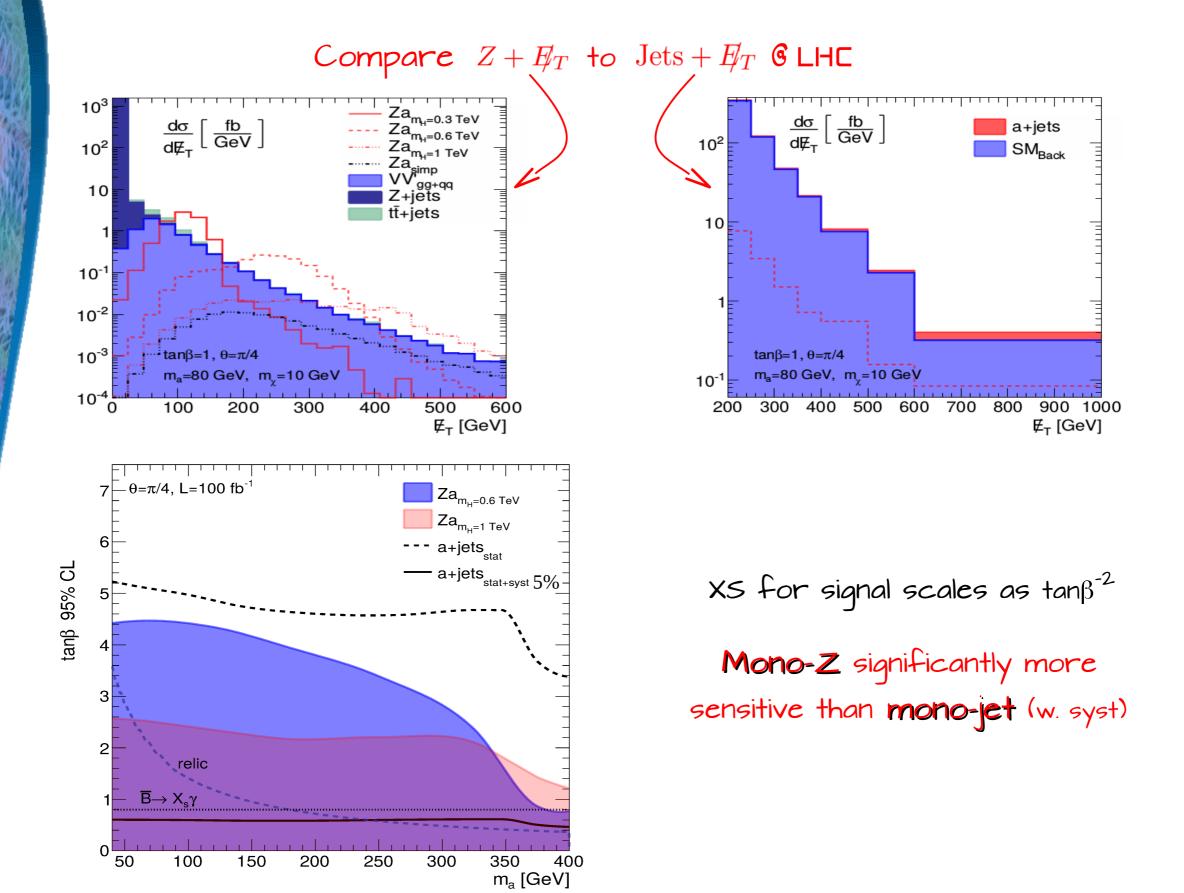
(mono-W)

JMN, Phys. Rev D93 (2016) 031701 Goncalves, Machado, JMN, ArXiv:1611.04593 Bauer, Haisch, Kahlhoefer, ArXiv:1701.07427


 $m_A > m_a + m_h$



$$E_T^{\max} \sim \frac{1}{2 m_A} \sqrt{(m_A^2 - m_h^2 - m_a^2)^2 - 4 m_h^2 m_a^2}$$


 $E_T^{\text{max}} \sim \frac{1}{2 m_{H_0}} \sqrt{(m_{H_0}^2 - m_Z^2 - m_a^2)^2 - 4 m_Z^2 m_a^2}$

11

2HDM + a Portal to Dark Matter

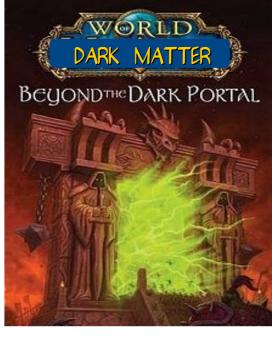
Summary & Thoughts

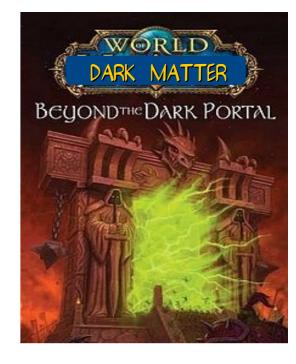
 Strong Case to go beyond "traditional" simplified models for Dark Matter searches @LHC

Simple Argument

⇒ DM From EW Multiplet → DM From EW Multiplet → of Multiplet misses relevant physics

⇒ Mediator from EW Multiplet → Neglecting States in Mediator Multiplet Misses Relevant DM Physics


Pseudoscalar Mediator scenario: New LHC signatures
 Received 7


2HDM + a (+ DM)

Resonant mono-Z Resonant mono-h

⇒ LHC could probe DM interpretation of Galactic Center gamma ray excess

 In general, identifying minimal consistent "model unit" for Dark Matter phenomenology in each scenario is important

