Models and phenomenology of flavoured axions

Fredrik Björkeroth

INFN Laboratori Nazionali di Frascati

Friday seminar UCL, 22.02.19

Q: What, if anything, does flavour have to do with a solution to the strong CP problem?

• Model

U(1) flavour symmetries as Peccei-Quinn symmetries (to appear in JHEP) [1811.09637 [hep-ph]]

• Phenomenology

Flavourful Axion Phenomenology JHEP 1808 (2018) 117 [1806.00660 [hep-ph]]

Recent developments:

[Celis, Fuentes-Martin, Serôdio '14] [Ahn '14 & '18] [FB, Chun, King '17 & '18]
[Ema, Hamaguchi, Moroi, Nakayama '16] [Calibbi, Goertz, Redigolo, Ziegler, Zupan '16]
[Linster, Ziegler '18] [Reig, Valle, Wilczek '18] [Alanne, Blasi, Goertz '18]
[Gavela, Houtz, Quilez, Del Rey, Sumensari '19]

• Strong CP problem

a quirk of the Standard Model of particle physics. Is it really a problem?

• Peccei-Quinn mechanism

(nearly) everyone's favourite solution to the above problem

• Peccei-Quinn symmetry

a global U(1) symmetry (like *B* or *L*) with certain characteristics; is spontaneously broken (like $SU(2)_L \times U(1)_Y$) by the vev of a new field.

\circ axion

the Goldstone mode of the sp. br. symmetry. Gets a small mass from QCD (like pions).

A nice review on the strong CP problem: [Peccei, hep-ph/0607268]

The strong *CP* problem is of almost no consequence

[paraphrasing Michael Dine, talk 2015]

The strong *CP* problem is of almost no consequence [paraphrasing Michael Dine, talk 2015]

Allowed term in QCD

$$\mathcal{L} \supset \bar{\theta} rac{g^2}{32\pi^2} G_{\mu
u} \tilde{G}^{\mu
u}, \quad \bar{\theta} = heta_{
m QCD} + {
m arg~det}~ M^u M^d$$

Values

• Measurement: neutron EDM [Pendlebury et al '15]

$$ar{ heta} \lesssim 10^{-10}$$

- $\circ~$ Naively: $\bar{\theta}\sim 1$
- $\circ~$ Anthropically: $\bar{\theta} \sim 10^{-3}$ is fine [Dine, Draper '15]
- Exact CP ($\bar{\theta} = 0$) in QCD not technically necessary

Ingredients in a standard PQ solution

- \circ Global $U(1)_{PQ}$ symmetry with QCD anomaly
- $\circ~$ Complex scalar field $\varphi \to \langle \varphi \rangle$ which breaks $U(1)_{PQ}$

Archetypal "invisible axion" models

KSVZ $\mathcal{L} \supset \lambda \varphi \overline{Q} Q$ \circ Add: heavy quarks Q \circ Axion- ψ_{SM} coupling: loop level

DFSZ

$$\mathcal{L} \supset \lambda \varphi^2 H_u H_d$$

- Add: second Higgs doublet
- \circ Axion- $\psi_{
 m SM}$ coupling: tree level

DFSZ Lagrangian

$$\mathcal{L} \sim \lambda_{\phi} \varphi^2 H_u H_d + Y_{ij}^{(u)} \overline{Q}_i u_j H_u + Y_{ij}^{(d)} \overline{Q}_i d_j H_d$$

Canonically, quark charges are generation-independent

- $\mathcal{X}(Q_i) = \mathcal{X}_Q$, etc
- Yukawa matrices $Y_{ii}^{u,d}$ full (no texture zeroes)
- Axion pheno dominated by $g_{a\gamma}, g_{aN}, g_{ae}$

However, universal quark U(1) charges are not necessary for the PQ solution to work.

Generation-dependent PQ symmetry ⇔ flavour-dependent axion

More generally

Generation-sensitive symmetries ⇔ flavour-dependent interactions

This is also the basis for models of SM Yukawa couplings: symmetries control Yukawa/mass textures.

A minimal U(1) model of quark flavour [FB, Di Luzio, Mescia, Nardi '18]

Assume

- 2HDM with $Y(H_{1,2}) = -1/2$
- \circ Global U(1) symmetry acting on quarks and Higgs
- Quark U(1) charges can be generation-dependent

Define U(1) charges \mathcal{X}

$$\mathcal{X}(H_{1,2}) \equiv \mathcal{X}_{1,2}$$
$$\mathcal{X}(Q) \equiv \{-x, -y, 0\}$$
$$\mathcal{X}(u) \equiv \{a, b, c\}$$
$$\mathcal{X}(d) \equiv \{m, n, p\}$$

We may write combined charges of quark bilinears as matrices:

$$\mathcal{X}_{\overline{Q}u} = \begin{pmatrix} a+x & b+x & c+x \\ a+y & b+y & c+y \\ a & b & c \end{pmatrix}, \quad \mathcal{X}_{\overline{Q}d} = \begin{pmatrix} m+x & n+x & p+x \\ m+y & n+y & p+y \\ m & n & p \end{pmatrix}$$
 If

$$(\mathcal{X}_{\overline{Q}u})_{ij} + \mathcal{X}_{1\,\mathrm{or}\,2} = 0 \quad \mathrm{or} \quad (\mathcal{X}_{\overline{Q}d})_{ij} - \mathcal{X}_{1\,\mathrm{or}\,2} = 0$$

the corresponding Yukawa coupling

$$\mathcal{L} \supset H_{1\,\mathrm{or}\,2}\overline{Q}_i u_j \text{ or } \widetilde{H}_{1\,\mathrm{or}\,2}\overline{Q}_i d_j$$

is allowed. Conversely, if $\cdots \neq 0$, Yukawa matrix has texture zero.

What is the minimal set of non-zero Yukawa operators compatible with this U(1) symmetry?

Conditions for a physically viable Yukawa sector

- 1. U(1) charge consistency
- 2. Non-zero quark masses

$$\det M_u \neq 0, \quad \det M_d \neq 0$$

3. Non-vanishing Jarlskog invariant (i.e. a "full" CKM matrix)

$$J \propto \mathcal{D} \equiv \det[M_d M_d^{\dagger}, M_u M_u^{\dagger}] \neq 0$$

With 9 quark fields, we can perform 8 relative phase redefinitions to remove phases in M_u , M_d . We must have 8 + 1 = 9 non-zero terms across $M_u \oplus M_d$ to have CP violation.

We need 9 non-zero Yukawa couplings: $M_n \oplus M_{9-n}$

Ex 1: $M_1 \oplus M_8$

$$M_{u} = M_{1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \times \end{pmatrix}, \quad M_{d} = M_{8} = \begin{pmatrix} 0 & \times & \times \\ \times & \times & \times \\ \times & \times & \times \end{pmatrix}$$

 $\Rightarrow \det M_u = 0$

Ex 2: $M_3 \oplus M_6$

$$M_{u} = M_{3} = \begin{pmatrix} \times & 0 & 0 \\ 0 & \times & 0 \\ 0 & 0 & \times \end{pmatrix}, \quad M_{d} = M_{6} = \begin{pmatrix} \times & \times & 0 \\ \times & \times & 0 \\ 0 & \times & \times \end{pmatrix}$$

 \Rightarrow impossible to write consistent set of quark charges

If at all, only $M_4 \oplus M_5$ structures are compatible with physics! Up to row/column permutations there is only one M_4 texture:

$$\begin{pmatrix} \times & \times & 0 \\ 0 & \times & 0 \\ 0 & 0 & \times \end{pmatrix}$$

Ex 3: $M_4 \oplus M_5$

$$M_u = M_4 = \begin{pmatrix} \times & \times & 0 \\ 0 & \times & 0 \\ 0 & 0 & \times \end{pmatrix}, \quad M_d = M_5 = \begin{pmatrix} \times & \times & 0 \\ \times & \times & 0 \\ 0 & 0 & \times \end{pmatrix}$$

 $\Rightarrow J \propto \sin \theta_{13} = \sin \theta_{23} = 0$

>> proof.get()

There are only 2 viable structures, both like $M_4 \oplus M_5$

$$\mathcal{T}_1 = \begin{pmatrix} \times & \times & 0 \\ 0 & \times & 0 \\ 0 & 0 & \times \end{pmatrix} \oplus \begin{pmatrix} \times & \times & 0 \\ 0 & \times & \times \\ 0 & 0 & \times \end{pmatrix}$$
$$\mathcal{T}_2 = \begin{pmatrix} 0 & 0 & \times \\ 0 & \times & 0 \\ \times & \times & 0 \end{pmatrix} \oplus \begin{pmatrix} \times & \times & 0 \\ 0 & \times & \times \\ 0 & 0 & \times \end{pmatrix}$$

- Equivalent SM physics for any column or (simultaneous) row permutations, i.e. by redefinitions of quark fields
- One quark has no mixing: it is "sequestered"
- $\circ~$ New Physics depends on sequestered quark \Rightarrow 2 \times 6 physically distinct textures

- It is possible to completely reconstruct the Yukawa matrices in terms of measured observables:
 - \circ 9 (real) + 1 (phase) Yukawa parameters
 - \circ 6 quark masses + 3 CKM mixing angles + 1 CP phase
 - $\circ~$ At high scales ($\mu \sim 10^{12}~{\rm GeV})$:

Observable	Value	Observable	Value
m _u /MeV m _c /GeV m _t /GeV m _d /MeV m _s /MeV m _h /GeV	$\begin{array}{c} 0.61 \substack{+0.19 \\ -0.18} \\ 0.281 \substack{+0.02 \\ -0.04} \\ 82.6 \pm 1.4 \\ 1.27 \pm 0.22 \\ 26 \substack{+8 \\ -5} \\ 1.16 \substack{+0.07 \\ +0.02} \end{array}$	$\begin{array}{c} \theta_{12} \\ \theta_{13} \\ \theta_{23} \\ \delta \end{array}$	0.22735 ±0.00072 0.00364 ±0.00013 0.04208 ±0.00064 1.208 ±0.054
	0.02	1 1	

[Xing et al '11, Antusch, Maurer '13]

- Exact analytical expressions are possible, but ugly
- Solutions are stable under perturbations

The U(1) flavour symmetries are Peccei-Quinn symmetries!

• Anomaly

$$N = \frac{1}{2} \sum_{i} \left[\mathcal{X}(u) + \mathcal{X}(d) - 2\mathcal{X}(Q) \right]_{i}$$

 $\circ~$ With normalization $\mathcal{X}_2-\mathcal{X}_1=1,$ we obtain

$$N(T_1) = 1$$
, $N(T_2) = 1/2$

- The Goldstone of the broken flavour U(1) is an axion
- To be compatible with low-energy pheno, we make it *invisible* • U(1) broken at high scale by new scalar ϕ
- $\circ~$ Couplings are generation-dependent \Rightarrow the axion is *flavoured*

Phenomenology

Axion mass comes from QCD, via mixing with the pion.

$$m_a = \frac{\sqrt{m_u m_d}}{(m_u + m_d)} \frac{m_\pi f_\pi}{f_a} \simeq 5.7 \ \mu eV \times \left(\frac{10^{12} \text{ GeV}}{f_a}\right)$$

For precise calculation, see [Grilli, Hardy, Vega, Villadoro '16]

Axion-photon coupling

$$g_{a\gamma} = \frac{\alpha}{2\pi f_a} \left[\frac{E}{N} - 1.92 \right]$$

e.g. if E/N = 8/3 and $f_a \approx 10^{10}$ GeV,

$$g_{a\gamma} \approx 8.7 \times 10^{-14} \ GeV^{-1}$$

Axion couplings to fermions

$$\mathcal{L}_{af} = -rac{\partial_{\mu}\partial}{2f_a}\sum_{f=u,d,e}ar{f}_i\gamma^{\mu}(V^f_{ij}-A^f_{ij}\gamma_5)f_j,$$

where $v_{PQ} = N_{DW} f_a = 2N f_a$ and

$$V^{f} = \frac{1}{2N} \left(U_{Lf}^{\dagger} x_{f_{L}} U_{Lf} + U_{Rf}^{\dagger} x_{f_{R}} U_{Rf} \right)$$
$$A^{f} = \frac{1}{2N} \left(U_{Lf}^{\dagger} x_{f_{L}} U_{Lf} - U_{Rf}^{\dagger} x_{f_{R}} U_{Rf} \right)$$

 $\begin{array}{l} \circ \ x_{f_L} = \operatorname{diag}(x_{f_{L1}}, x_{f_{L2}}, x_{f_{L3}}) \ , \ x_{f_R} = \operatorname{diag}(x_{f_{R1}}, x_{f_{R2}}, x_{f_{R3}}) \\ \circ \ U_{Lf} \ \text{and} \ U_{Rf} \ \text{are unitary matrices:} \ Y^f_{\operatorname{diag}} = U^{\dagger}_{Lf} Y^f U_{Rf} \\ \circ \ V_{\operatorname{CKM}} = U^{\dagger}_{Lu} U_{Ld} \end{array}$

$$V^{f} = \frac{1}{2N} \left(U_{Lf}^{\dagger} x_{f_{L}} U_{Lf} + U_{Rf}^{\dagger} x_{f_{R}} U_{Rf} \right)$$
$$A^{f} = \frac{1}{2N} \left(U_{Lf}^{\dagger} x_{f_{L}} U_{Lf} - U_{Rf}^{\dagger} x_{f_{R}} U_{Rf} \right)$$

Special cases

1. All generations couple equally: x_{f_L} , $x_{f_R} \propto l_3$

$$\begin{array}{lll} V^f &=& \frac{1}{2} (x_{f_L} + x_{f_R}) \mathbb{I}_3 \\ A^f &=& \frac{1}{2} (x_{f_L} - x_{f_R}) \mathbb{I}_3 \end{array} \Rightarrow \text{no flavour violation!} \end{array}$$

2. Anomaly-free: $x_{f_L} = x_{f_R}$ \rightarrow no chiral anomaly $(N = 0) \rightarrow$ no PQ solution! Decay: $P \rightarrow P'a$, where $P = (\bar{q}_P q')$, $P' = (\bar{q}_{P'}q')$. Branching ratio

$$\operatorname{Br}(P \to P'a) = \frac{1}{16\pi\Gamma(P)} \frac{\left|V_{q_Pq_{P'}}^f\right|^2}{(2f_a)^2} m_P^3 \left(1 - \frac{m_{P'}^2}{m_P^2}\right)^3 |f_+(0)|^2,$$

0	$f_+(0)$ is a hadronic form factor	Decay	$f_{+}(0)$
0	Only unknown quantity is the ratio	$K o \pi$	1
	$ V^r /f_a$	$D ightarrow \pi$	0.74(6)(4)
0	Example: $K^+ \rightarrow \pi^+$ a decay proceeds	$D \to K$	0.78(5)(4)
0	by $\bar{s} \rightarrow \bar{d}a$ with coupling strength	$D_s \rightarrow K$	0.68(4)(3)
		$B ightarrow \pi$	0.27(7)(5)
	$V_{sd}^a \equiv V_{21}^a$	$B \to K$	0.32(6)(6)
		$B_s \rightarrow K$	0.23(5)(4)

• NA62 @ CERN SPS: $K^+ \rightarrow \pi^+ a \ (K^+ \rightarrow \pi^+ \nu \bar{\nu})$

 $\circ~$ Current status: one $\nu\bar{\nu}$ "event" [R. Marchevski at Moriond '18]

• KOTO @ J-PARC: $K^0_L \rightarrow \pi^0 a$

• Current status: taking data

• KLEVER @ CERN SPS: $K_L^0 \rightarrow \pi^0 a$

• Current status: proposed (early stages) [Moulson '16]

• Belle(-II): $B^{\pm} \to K^{\pm} \nu \bar{\nu}$ and other *B* physics • Current status: calibrating

What about *D* decays? BESIII @ IHEP

Decay	Branching ratio	Experiment	$\tilde{c}_{P \rightarrow P'}$	$2f_{a}/{ m GeV}$
$K^+ ightarrow \pi^+ a$	$\begin{array}{c} < 0.73 \times 10^{-10} \\ < 0.01 \times 10^{-10} * \\ < 1.2 \times 10^{-10} \\ < 0.59 \times 10^{-10} \end{array}$	E949 + E787 NA62 (future) E949 + E787 E787	3.51×10^{-11}	> $6.9 \times 10^{11} V_{21}^d $ > $5.9 \times 10^{12} V_{21}^d $
$egin{array}{c} \mathcal{K}^0_L ightarrow \pi^0 a \ (\mathcal{K}^0_L ightarrow \pi^0 u ar{ u}) \end{array}$	$< 5 imes 10^{-8}$ (< 2.6 $ imes 10^{-8}$)	КОТО E391a	3.67×10^{-11}	$> 2.7 \times 10^{10} V_{21}^d $
$egin{array}{c} B^{\pm} ightarrow \pi^{\pm} a \ (B^{\pm} ightarrow \pi^{\pm} u ar{ u}) \end{array}$	$< 4.9 \times 10^{-5} \\ (< 1.0 \times 10^{-4}) \\ (< 1.4 \times 10^{-4})$	CLEO BaBar Belle	5.30×10^{-13}	$> 1.0 \times 10^8 V_{31}^d $
$B^{\pm} ightarrow K^{\pm} a$ $(B^{\pm} ightarrow K^{\pm} u ar{ u}$	$ \begin{array}{c} < 4.9 \times 10^{-5} \\ (< 1.3 \times 10^{-5}) \\ (< 1.9 \times 10^{-5}) \\ (< 1.5 \times 10^{-6})^* \end{array} $	CLEO BaBar Belle Belle-II (future)	7.26×10^{-13}	$> 1.2 \times 10^8 V_{32}^d $
$egin{array}{c} B^0 ightarrow \pi^0 a \ (B^0 ightarrow \pi^0 u ar{ u}) \end{array}$	$(< 0.9 \times 10^{-5})$	Belle	4.92×10^{-13}	$\gtrsim 2.3 imes 10^8 V_{31}^d $
$B^{0} \to K^{0}_{(S)}a$ $(B^{0} \to K^{0}\nu\bar{\nu})$	$< 5.3 \times 10^{-5}$) (< 1.3 × 10 ⁻⁵)	CLEO Belle	$6.74 imes 10^{-13}$	$> 1.1 \times 10^8 V_{32}^d $
$ \begin{array}{c} D^{\pm} \rightarrow \pi^{\pm} a \\ D^{0} \rightarrow \pi^{0} a \\ D^{\pm}_{s} \rightarrow K^{\pm} a \\ B^{0}_{s} \rightarrow \overline{K}^{0} a \end{array} $	< 1 < 1 < 1 < 1 < 1		$\begin{array}{c} 1.11\times 10^{-13} \\ 4.33\times 10^{-14} \\ 4.38\times 10^{-14} \\ 3.64\times 10^{-13} \end{array}$	$> 3.3 \times 10^5 V_{21}^u \\> 2.1 \times 10^5 V_{21}^u \\> 2.1 \times 10^5 V_{21}^u \\> 6.0 \times 10^5 V_{31}^d $

Limits

Bounds in the $U(1)_{QF}$ model

Let us rotate away the anomaly term by

$$q o e^{irac{eta q}{2}rac{a}{f_a}\gamma_5}q, \qquad eta_q = rac{m_*}{m_q},$$

where q = u, d, s and $m_*^{-1} = m_u^{-1} + m_d^{-1} + m_s^{-1}$. The axion-quark Lagrangian transforms as

$$\mathcal{L}_{\partial} \to \mathcal{L}_{\partial}' \supset -\frac{\partial_{\mu}a}{2f_a} \left[\sum_{q=u,d,s} c_q \bar{q} \gamma^{\mu} \gamma_5 q + c_{sd} \bar{s} \gamma^{\mu} \gamma_5 d + c_{sd}^* \bar{d} \gamma^{\mu} \gamma_5 s \right],$$

where

$$c_{u} = A_{11}^{u} + \beta_{u}/2,$$

$$c_{d} = A_{11}^{d} + \beta_{d}/2,$$

$$c_{s} = A_{22}^{d} + \beta_{s}/2,$$

$$c_{sd} = A_{21}^{d}.$$

We can write this as kinetic mixing between axions and mesons:

$$\mathcal{L}_{aP}^{\mathrm{eff}} = -\sum_{P} c_{P} \frac{f_{P}}{2f_{a}} \partial_{\mu} a \partial^{\mu} P,$$

with

$$c_{\pi^{0}} = c_{u} - c_{d}, \qquad c_{\eta} = c_{u} + c_{d} - 2c_{s}$$

$$c_{\eta'} = c_{u} + c_{d} + c_{s}, \qquad c_{K^{0}} = c_{sd} = c_{K^{0}}^{*}$$

Diagonalising the kinetic mixing,

$$a
ightarrow rac{a}{\sqrt{1-\sum_P \eta_P^2}}, \qquad P
ightarrow P + rac{\eta_P a}{\sqrt{1-\sum_P \eta_P^2}}$$

where

$$\eta_P \equiv \frac{c_P f_P}{2f_a}$$

Meson mass splitting

$$(\Delta m_P)_{\mathrm{axion}} \simeq |\eta_P|^2 m_P = |c_P|^2 \frac{f_{P^0}^2}{(2f_a)^2} m_P.$$

System	$(\Delta m_P)_{ m exp}/{ m MeV}$	$2f_a/{ m GeV}$
$K^{0} - \overline{K}^{0}$ $D^{0} - \overline{D}^{0}$ $B^{0} - \overline{B}^{0}$ $B^{0}_{s} - \overline{B}^{0}_{s}$	$\begin{array}{c} (3.484 \pm 0.006) \times 10^{-12} \\ (6.25 \substack{+2.70 \\ -2.90}) \times 10^{-12} \\ (3.333 \pm 0.013) \times 10^{-10} \\ (1.1688 \pm 0.0014) \times 10^{-8} \end{array}$	$\begin{array}{l} \gtrsim 2\times 10^6 c_{\mathcal{K}^0} \\ \gtrsim 4\times 10^6 c_{D^0} \\ \gtrsim 8\times 10^5 c_{B^0} \\ \gtrsim 1\times 10^5 c_{B_s^0} \end{array}$
	PDG	[Patrignani et al '16]

Notes

- Assume central SM value
- $\,\circ\,$ Uncertainty dominated by theory; require $(\Delta m_{P})_{\rm axion} \lesssim (\Delta m_{P})_{\rm exp}$
- $\circ~$ Possible improvements to $(\Delta m_{\rm K})_{\rm th}$ from lattice soon [Bai, Christ, Sachrajda '18]

Lepton decays proceed similarly to mesons. Define a total coupling

$$\left|C_{\ell_{1}\ell_{2}}^{e}\right|^{2} = \left|V_{\ell_{1}\ell_{2}}^{e}\right|^{2} + \left|A_{\ell_{1}\ell_{2}}^{e}\right|^{2}$$

Two-body decay branching ratio

$$\operatorname{Br}(\ell_1 \to \ell_2 a) = \frac{1}{16\pi \,\Gamma(\ell_1)} \frac{\left|C_{\ell_1 \ell_2}^e\right|^2}{(2f_a)^2} m_{\ell_1}^3 \left(1 - \frac{m_{\ell_2}^2}{m_{\ell_1}^2}\right)^3$$

We may also probe the angular distribution. For muons,

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta} \simeq \frac{|C_{21}^e|^2}{32\pi} \frac{m_{\mu}^3}{(2f_a)^2} (1 - AP_{\mu}\cos\theta)$$

where

$$A = -\frac{2\text{Re}[A_{21}^e(V_{21}^e)^*]}{|C_{21}^e|^2}$$

Notes

- $\circ~$ Standard Model weak interactions are 'V-A' $\Leftrightarrow {\it A}=-1$
- Isotropic decays (A = 0) for $A_{21}^e = 0$ or $V_{21}^e = 0$.
- $\circ~$ Strongest signal for 'V+A' (RH) interactions

• Jodidio et al @ TRIUMF [Jodidio et al '86]

- \circ Stopped μ^+ on metal foil
- Assume isotropic decays (A = 0)
- TWIST @ TRIUMF
 [Bayes et al '14]
 - Sensitive to anisotropies
 - Limits for A = 0 not as good as TRIUMF

- Mu3e @ PSI
 - \circ Stopped μ^+
 - $\circ~$ Primary channel: $\mu^+ \rightarrow e^+ e^- e^+$
 - $\circ\,$ Also able to search for $\mu^+ \to e^+ X^0$ [Perrevoort (PhD thesis) '18]

Decay	Branching ratio	Experiment	$\tilde{c}_{\ell_1 \to \ell_2}$	$2f_a/{ m GeV}$
$\mu^+ ightarrow e^+ a$	$< 2.6 \times 10^{-6} \\ < 2.1 \times 10^{-5} \\ < 1.0 \times 10^{-5} \\ < 5.8 \times 10^{-5} \\ \le 5 \times 10^{-9} *$	(A = 0) Jodidio <i>et al</i> (A = 0) TWIST (A = 1) TWIST (A = -1) TWIST Mu3e (future)	7.82×10^{-11}	$ > 5.5 \times 10^{9} V_{21}^{e} > 1.9 \times 10^{9} C_{21}^{e} > 2.8 \times 10^{9} C_{21}^{e} > 1.2 \times 10^{9} C_{21}^{e} \geq 1 \times 10^{11} C_{21}^{e} $
$egin{array}{ccc} au^+ ightarrow e^+ a \ au^+ ightarrow \mu^+ a \end{array}$	$\stackrel{\sim}{<} 1.5 \times 10^{-2} \\ < 2.6 \times 10^{-2}$	ÀRGUŚ ARGUS	$\begin{array}{c} 4.92 \times 10^{-14} \\ 4.87 \times 10^{-14} \end{array}$	$ \begin{array}{c} \sim \\ > 1.8 \times 10^{6} C_{31}^{e} \\ > 1.4 \times 10^{6} C_{32}^{e} \end{array} $

Decays like $\ell_1 \rightarrow \ell_2 a \gamma$, in the limit $m_{\ell_2} = m_a = 0$, may be expressed

$$\frac{\mathrm{d}^2\Gamma}{\mathrm{d}x\,\mathrm{d}y} = \frac{\alpha \left|C_{\ell_1\ell_2}^e\right|^2 m_{\ell_1}^3}{32\pi^2 (2f_a)^2} f(x,y)$$

where

$$f(x,y) = \frac{(1-x)(2-y-xy)}{y^2(x+y-1)}, \quad x = \frac{2E_{\ell_2}}{m_{\ell_1}}, \quad y = \frac{2E_{\gamma}}{m_{\ell_1}}$$

Kinematics and energy conservation fix

$$x, y \le 1, x + y \ge 1, \cos \theta_{2\gamma} = 1 + \frac{2(1 - x - y)}{xy}$$

Must consider

- IR divergences
- Experimental cuts (e.g. $E_{\gamma} > 40$ MeV in MEG)

• MEG(-II) @ PSI

- \circ Searching for $\mu
 ightarrow e \gamma$ in stopped μ^+
- Status: MEG completed, MEG-II under construction
- Reach: TBD

Decay	Branching ratio	Experiment
$\mu^+ o e^+ \gamma$	$< 4.2 \times 10^{-13}$	MEG
	$\lesssim 6 imes 10^{-14} st$	MEG-II (future)
$ au^- o e^- \gamma$	$< 3.3 imes 10^{-8}$	BaBar
$ au^- o \mu^- \gamma$	$< 4.4 \times 10^{-8}$	BaBar

Best limit on $\mu \to ef\gamma$ (for some scalar f)

- Crystal Box experiment [Bolton et al '88]
 - $\circ \operatorname{Br}(\mu \to ef\gamma) < 1.1 imes 10^{-9}$
 - No assumptions on decay isotropy
- MEG-II should be more sensitive (full study needed)

 $\mu \rightarrow 3e$

Flavoured axion can mediate $\mu \to 3e$ through the μea vertex (t- and s-channel). To $\mathcal{O}(m_e^2)$, the branching ratio is

$$\begin{aligned} \operatorname{Br}(\mu^+ \to e^+ e^- e^+) &\approx \frac{m_e^2 m_{\mu}^3}{16\pi^3 \Gamma(\mu)} \frac{|A_{11}^e|^2 |C_{21}^e|^2}{(2f_a)^4} \left(\log \frac{m_{\mu}^2}{m_e^2} - \frac{15}{4}\right), \\ &\approx 1.43 \times 10^{-41} |A_{11}^e|^2 |C_{21}^e|^2 \left(\frac{10^{12} \text{ GeV}}{(2f_a)}\right)^4 \end{aligned}$$

- Experiment: Mu3e @ PSI
 - Status: under construction, taking data in 2019
 - Reach: $Br < \mathcal{O}(10^{-16})$
 - 4 OoM improvement over SINDRUM (1987)
 - $\circ f_a \gtrsim 10^6 \text{ GeV}$

The same μea vertex can mediate $\mu - e$ conversion in nuclei

$$\begin{aligned} \mathcal{R}_{\mu e}^{(A,Z)} &\equiv \frac{\Gamma(\mu^- \to e^-(A,Z))}{\Gamma_{\mu^- \mathrm{cap}}^{(A,Z)}} \\ &\sim \frac{m_{\mu}^5}{(q^2 - m_a^2)^2} \frac{(\alpha Z)^3}{\pi^2 \, \Gamma_{\mu^- \mathrm{cap}}^{(A,Z)}} \frac{m_{\mu}^2 m_N^2}{(2f_a)^4} |C_{21}^e|^2 |S_N^{(A,Z)} C_{aN}|^2 \end{aligned}$$

Spin-dependent process [see Cirigliano '17]

• not seen: $\mathcal{O}(1)$ form factors

• Relevant couplings: C_{21}^e and $g_{aN} = C_{aN}m_N/(2f_a)$

 \circ C_{aN} is model-dependent, depends on diagonal charges

- Experiments
 - $\circ\,$ SINDRUM-II: current best limit ${\cal R}_{\mu e}^{\rm Au} < 7 \times 10^{-13}$
 - Mu2e @ Fermilab and COMET @ J-PARC: under construction
 - Measure $R_{\mu e}^{\rm Al}$; both expected to reach 4 OoM improvement

Theory

- Generation-dependent $U(1)_{PQ} \Leftrightarrow$ flavoured axion.
- We have explored such a U(1) quark flavour symmetry, with maximal reduction in free Yukawa parameters.
- Only two structures are allowed: both are PQ symmetries.
- Axion couplings are all fixed by flavour data (up to f_a).

Phenomenology

- Rare meson decays (esp. $K^+
 ightarrow \pi^+ a$)
- Neutral meson mixing [ALPs]
- \circ Muon decays $(\mu^+
 ightarrow e^+ a)$
- $\circ~\mu \rightarrow 3e$ and $\mu-e$ conversion [ALPs]

- 1. Astrophysical bounds: g_{ae} and g_{aN}
- 2. Nucleophobia in the minimal $U(1)_{QF}$ model
- 3. Quark sequestration, and strong suppression of $K
 ightarrow \pi a$
- 4. MEG-II: full analysis

Thank you!