

Searching for Di-Higgs→bbττ at ATLAS

Katharine Leney

20th November 2015

Overview

- Motivation for searching for di-Higgs pairs (and in the $bb\tau\tau$ channel).
- ATLAS Run 1 HH \rightarrow bb $\tau\tau$ analysis.
- Combination of all ATLAS HH channels.
- Prospects for HH \rightarrow bb $\tau\tau$ searches in Run 2 and beyond.

Motivation

- TeV-scale resonances decaying to two 125 GeV Higgs bosons (h) predicted by several models, including:
 - RS KK Graviton
 - 2 Higgs Doublet Models (2HDM)
 - Higgs portal models
 - Composite models with hh resonances

- Enhancement of non-resonant di-Higgs production, e.g.
 - Models with heavy top-partners
 - Composite Higgs models
 - Pseudo-dilaton models

- SM di-Higgs production at HL-LHC.
 - Need \sim 3000 fb⁻¹ to measure this.
 - Sensitivity studies now drive upgrade design and performance requirements.

20th November 2015

Katharine Leney

SUSY & The Higgs Sector (2HDM)

- Supersymmetric extensions to Standard Model require two Higgs doublets → 5 observable Higgs bosons:
 - 3 neutral (h/A/H)
 - ▶ 2 charged (H[±])
- Assume the observed 125 GeV Higgs boson is the light Higgs (h).
- Heavy Higgs (H) can decay to a pair of light Higgses (h).

- Branching ratio to hh can be large, depending on parameters of model.
- Range $m_H < 500$ GeV theoretically favoured.
- Couplings can be expressed as functions of α (mixing angle) and tan β (ratio of vacuum expectation values).

	bb	WW	ττ	ZZ	γγ
bb	33%				
WW	25%	4.6%			
ττ	7.4%	2.5%	0.39%		
ZZ	3.1%	1.2%	0.34%	0.076%	
γγ	0.26%	0.10%	0.029%	0.013%	0.0053%

	bb	WW	ττ	ZZ	γγ		
bb	33%		 <u>bbbb</u> Largest branching ratio Harder to trigger on (especially for low mass) 				
WW	25%	4.6%	(espec resona	ially for low mass inces and SM)			
тт	7.4%	2.5%	0.39%				
ZZ	3.1%	1.2%	0.34%	0.076%			
γγ	0.26%	0.10%	0.029%	0.013%	0.0053%		

	bb	WW	ττ	ZZ	ŶŶ			
bb	33%		• Take a ł	nit on branc	hing ratio to W decays			
WW	25%	4.6%	 Reconstructing hadronic W decays Ieptonically (~34%). Reconstructing hadronic W decays 					
ττ	7.4%	2.5%	0.39%					
ZZ	3.1%	1.2%	0.34%	0.076%				
ŶŶ	0.26%	0.10%	0.029%	0.013%	0.0053%			

	bb	WW	ττ	ZZ	γγ		
bb	33%						
WW	25%	4.6%		• Clean to di-p	signature (th hoton pair i	nanks n final	
ττ	7.4%	2.5%	0.39%	state). • Tiny bi	 state). Tiny branching ratios 		
ZZ	3.1%	1.2%	0.34%	0.076%			
γγ	0.26%	0.10%	0.029%	0.013%	0.0053%		

	bb	WW	ττ	ZZ	γγ		
bb	33%		ZZZZ • Possibi	lity to selec	t clean final		
WW	25%	4.6%	states v large h	es with 2 or 4 leptons, b ge hit on branching ratio.			
ττ	7.4%	2.5%	0.39%				
ZZ	3.1%	1.2%	0.34%	0.076%			
ŶŶ	0.26%	0.10%	0.029%	0.013%	0.0053%		

	bb	WW	тт	ZZ	γγ		
bb	33%		 <u>bbττ</u> Possibi decays 	ility to trigge 5 (58% of ev	er on lepton ents).	from tau	
WW	25%	4.6%	• Fully hadronic tau-tau channels have comparable sensitivity to $e\tau_h$ and $\mu\tau_h$ channels at ATLAS.				
тт	7.4%	2.5%	0.39%				
ZZ	3.1%	1.2%	0.34%	0.076%			
γγ	0.26%	0.10%	0.029%	0.013%	0.0053%		

Tau Decay Characteristics

Hadronic

- Well collimated, low multiplicity jet
- Deposits in both hadronic and EM calorimeters.
- One or three tracks matching the calorimeter deposition.

Tau Reconstruction and ID in ATLAS

- Taus seeded from anti- k_t jets with $\Delta R = 0.4$.
- Candidates required to be associated with 1 or 3 tracks within a core region $\Delta R < 0.2$.
- Isolated in annulus $0.2 < \Delta R < 0.4$.
- Various discriminating variables combined in Boosted Decision Trees to reject tau-fakes from electrons and jets.

• BDTs trained separately for 1 and 3-prong taus.

b-Jet Decay Characteristics

b-jet tagging relies on B-hadron properties:

- Long lifetime → displaced vertex (secondary vertex, SV) typically few mm from primary vertex (PV).
- Large impact parameter (d0).
- Large B-hadron mass.
- Semi-leptonic (e/μ) decay of B-hadron
 - ► (~40% including b→c→ ℓ vX decay).

b-Tagging in ATLAS

- Use outputs of 3 algorithms as inputs to MVA:
 - IP3D: Use transverse and longitudinal IP significance.
 - SV1: Reconstruct SV and use information about:
 - SV mass
 - $\Sigma(P_T SV tracks) / \Sigma(P_T all tracks in jet)$
 - Number of two-track vertices
 - ΔR (jet-direction, PV \rightarrow SV direction)
 - ▶ JetFitter: Exploit the topology of weak B/C-hadron decay chain $(b \rightarrow c \rightarrow X)$ inside jets.

Run 1 HH \rightarrow bbtt Analysis

Preselection

- Select all objects in $bb\tau\tau$ final state ($\ell + \tau + 2$ -jets).
- Only lepton-hadron decay mode considered in Run 1.

Kinematic Cuts

• Addition rejection against Z+jets, W+jets and ttbar.

Event Categorisation

Number of b-jets.
p_T of τ-pair.

Resonant Search

- m(ττ) cut
- Final discriminant: m(bbττ).

Event Preselection

Single lepton trigger

One isolated lepton (e/ μ), p_T > 26 GeV

Di-lepton veto

One hadronic tau, $p_T > 20 \text{ GeV}$

Charge correlation between lepton and tau

Two or more jets, $p_T > 30 \text{ GeV}$

Non-Resonant Search

• Final discriminant: $m(\tau\tau)$

$$\sqrt{s} = 8 \text{ TeV}$$

 $\int \mathscr{L} = 20 \text{ fb}^{-1}$

Top-Pair Production

- Contribution where the hadronic tau is real estimated from MC (Powheg).
- Fraction where hadronic W-decay fakes tau calculated separately (see later slide).

Z→TT Background

- Estimated from data using embedding method:
 - > Z→µµ events selected from data.
 - Muons replaced with simulated taus.
 - Missing E_T corrections applied.
- Normalised to data in $40 < M^{vis}(\tau \tau) < 70 \text{ GeV}$ region.

Fake-Factor Method

Transverse mass	Reject W+jets and ttbar $m_T < 60 \text{ GeV}$	$\rightarrow 0^{\circ}$ 1400 $\rightarrow 0^{\circ}$ ATLAS $\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$
Missing E _T φ centrality	Missing E_T should point between the lepton and tau.	st 1200 - + Data
Lepton-tau p⊤ balance	$\Delta p_T(\ell, \tau) < 20 \text{ GeV}$	1000 $+$ $+$ $+$ $+$ $+$ 0 $Chers$ 0 0 0 0 0 0 0 0 0 0
m _W vs. m _{top}	Elliptical cuts on W and top masses	600 Systematics
m _{bb} mass window	$90 < m_{bb} < 160 \text{ GeV}$	400
m _{ττ} mass window	100 < m _{ττ} < 150 GeV (only for resonant search)	0 20 40 60 80 100120140160180200
		m ^{l,v} [GeV]

m_{ττ} reconstructed using Missing Mass Calculator (MMC), arXiv: 1012.4686
Weights the kinematically allowed τ decay solutions by a likelihood function.

Event Categorisation

Non-Resonant Analysis

• Use $m_{\tau\tau}$ as final discriminant

	Cross-section (upper limit)
Expected	1.3 pb
Observed	1.6 pb

	Cross-section (upper limit) relative to SM
Expected	130
Observed	160

Resonant Analysis

- Apply scale factors m_h/m_{bb} and $m_h/m_{\tau\tau}$ to 4-momenta of bb and $\tau\tau$ systems.
 - $m_h = 125 \text{ GeV} (SM \text{ Higgs})$
- Improves mass resolution of heavy resonances.

Resonant Analysis

Combination With Other Channels

Constraints on 2HDM Models

<u>hMSSM</u>

Lighter h boson has a mass of 125 GeV. Non-observation of superparticles at the LHC indicates that SUSY-breaking scale $M_S \ge 1$ TeV. Approx. "model-independent" approach of the MSSM Higgs sector. Eur. Phys. J. C 73, 2650 (2013)

Iow-tb-high: Lighter h boson has a mass of 125 GeV. Preferred region is low tan-β and heavy SUSY. LHCHXSWG-2015-002

Katharine Leney

- Include fully hadronic tau-tau decay channel.
 - Similar sensitivity to lepton-hadron channel.
 - Fully leptonic channel adds very little, but can be useful as a cross-check.
- Further analysis optimisation.
- Improved object identification for Run 2.

- Include fully hadronic tau-tau decay channel.
 - Similar sensitivity to lepton-hadron channel.
 - Fully leptonic channel adds very little, but can be useful as a cross-check.
- Further analysis optimisation.
- Improved object identification for Run 2.

- Include fully hadronic tau-tau decay channel.
 - Similar sensitivity to lepton-hadron channel.
 - Fully leptonic channel adds very little, but can be useful as a cross-check.
- Further analysis optimisation.

Katharine Leney

- Dedicated analysis using sub-structure techniques to reconstruct boosted tau and bjet pairs will follow later in 2016.
- Current analysis has a natural end-point of ~1 TeV, where $\Delta R(\tau,\tau)$ ~0.4 and tau ID fails.
 - Normal tau ID relies on an isolation annulus (0.2 < ΔR < 0.4) so fails if the taus are too close together.
 - Dedicated boosted tau-pair finding algorithm to recover these events and extend mass reach of the analysis.
- b-tagging performance also degrades as a function of $\Delta R(b,b)$.
 - Less of a 'cliff' than tau ID.
 - Dedicated tagger for finding boosted pairs of b-jets developed.
 - ► HH→bbbb analysis shows significant gains when using it.

SM Higgs Pair Production

- Higgs self-coupling crucial check of EWSB mechanism.
- Possibly *the* most challenging measurement at the LHC!
- Direct measurement of the Higgs trilinear self-coupling (λ_{HHH}) can be made by studying Higgs pair-production.
- Need to dis-entangle top box-diagram and diagram containing the HHH vertex...
- Destructive interference with diagrams not containing the HHH vertex.
 - Box diagram dominates in boosted events.
 - Absolutely crucial to push down to lower p_T 's in order to access λ_{HHH} .

SM Higgs: Pair Production

• For $\lambda_{\text{HHH}}/\lambda_{\text{HHH}}^{\text{SM}} = 0/1/2$, cross-section = 71/34/16 fb.

• With 3000 fb⁻¹ a ~ 3σ combined measurement by ATLAS+CMS should be possible.

Katharine Leney

SM HH→bbττ Sensitivity Study

ATL-PHYS-PUB-2015-046

- Truth-level, `cut-and-count' study for first estimate of sensitivity.
 - Detector response parameterised.
 - More sophisticated analyses (using MVAs) will be necessary.
- Assume 3000 fb⁻¹ data, $\sqrt{s} = 14$ TeV, and 140 proton-proton collisions per bunch-crossing.
- All tau-tau decay modes considered:
 - Fully leptonic $(\tau_{\ell}\tau_{\ell})$
 - Semi-leptonic $(\tau_{\ell}\tau_h)$
 - Fully hadronic $(\tau_h \tau_h)$
- SM Higgs processes that have been negligible backgrounds in the new physics searches so far become more important.
 - ▶ e.g. VH, ttV, ttH
- Higgs bosons produced by λ_{HHH} process have low p_T.
 - Those produced via top box-diagram are more boosted.
 - ▶ Lower p_T objects harder to separate from multi-jets backgrounds.
 - Need to find the right balance...

Event Selection

20th November 2015

Katharine Leney

m^{mmc}_{tt} [GeV] 44

Event Selection

* Slight variations in exact cut values between channels

Event Selection

	Example Cut Value*	
m _{bb} mass window	95 < m _{bb} < 145 GeV	
m _{ττ} mass window	90 < m _{ττ} < 160 GeV	
p _T (bb)	p _T (bb) > 200 GeV	/10 GeV
bb-pair separation	$\Delta R(bb) < 1.0$	Events
Transverse mass	m _T < 80 GeV	
Stransverse mass	m _{T2} > 180 GeV	

* Slight variations in exact cut values between channels

<u>Stransverse mass</u>: Generalisation of the transverse mass when applied to signatures with two (or more) invisible particles in the final state.

Phys.Lett. B463 (1999) 99-103

Prospects for Measuring λ_{HHH} at the HL-LHC

Channel	Significance	Combined in channel	Total combined	$\tau_{\ell} \tau_{\ell}$ channels order
$\begin{array}{c} e + \text{jets} \\ \mu + \text{jets} \end{array}$	$\begin{array}{c} 0.31 \\ 0.30 \end{array}$	0.43	0.60	of magnitude less sensitive than $\tau_{\ell}\tau_{h}$ o
$ au_{ m had} au_{ m had}$	0.41	0.41		t _n t _n channels.

- Use of more sophisticated analysis techniques can improve sensitivity.
- Combination across many channels will be necessary.
- Large correlation between total di-Higgs production cross-section and λ_{HHH}.
 - λ_{HHH} better studied using shape analysis of key observables.

Katharine Leney

Summary & Conclusions

- Di-Higgs physics is a new and exciting avenue for searching for new physics.
 - Many new physics models predict enhanced rates, either as resonant or nonresonant production.
 - Also predicted by the SM where it will be a crucial test of the Higgs mechanism.
 - bbττ is a promising channel, particularly in the SM/lower mass/non-resonant regime.
- Run 1 searches showed no signal in the bbττ, or any other channel.
 - Limits set on resonant and non-resonant HH production.
- Will significantly extend this reach during the LHC Run 2.
 - Even with 2015 data alone should do better than Run 1.
 - Extra analysis optimisations will improve the sensitivity further, particularly at higher masses.
- The $bb\tau\tau$ channel is a promising one for measuring di-Higgs production and λ_{HHH} at the HL-LHC.

Is there anything beyond the Standard Model?

Back Up

Obligatory ATLAS Detector Slide

44m

Combination With Other Channels

20th November 2015

53

ATLAS H→hh→ bbyy

ATLAS $H \rightarrow hh \rightarrow bbbb$

2HDM Models

- Higgs sector of 2HDM models described by parameters:
 - 4 Higgs masses
 - $tan-\beta$ (ratio of vacuum expectation values, vev)
 - α (mixing between the two neutral CP even states h,H).
- Several different 'types' of 2HDM:
 - Type I: One doublet couples to V("fermiophobic"), one to fermions.
 - Type II: "MSSM like" model, one doublet couples to up-type quarks, one to down-type quarks.
 - Type III: "Lepton-specific" model, Higgs bosons have same couplings to quarks as type I and to leptons as in type II.
 - Type IV: "Flipped" model, Higgs bosons have same couplings to quarks as in type II and to leptons as in type I.
- For more specific MSSM models m_h fully determined at tree level by m_A and tan- β .

Prospects for Measuring λ_{HHH} at the HL-LHC

Signal	had-had	lep-had	lep-had	lep-lep	lep-lep	lep-lep
Signifcance		(e channel)	$(\mu \text{ channel})$	(ee channel)	$(\mu\mu \text{ channel})$	$(e\mu \text{ channel})$
$S/\sqrt{B} \ (\lambda = 0\lambda_{\rm SM})$	0.66	0.49	0.45	0.044	0.055	0.091
$S/B \ (\lambda = 0 \lambda_{ m SM})$	0.023	0.023	0.023	0.00092	0.0016	0.0017
$S/\sqrt{B} \ (\lambda = 1\lambda_{\rm SM})$	0.47	0.35	0.33	0.033	0.036	0.062
$S/B \ (\lambda = 1\lambda_{\rm SM})$	0.016	0.016	0.017	0.00069	0.0010	0.0012
$S/\sqrt{B} \ (\lambda = 2\lambda_{\rm SM})$	0.29	0.25	0.23	0.023	0.025	0.044
$S/B \ (\lambda = 2\lambda_{\rm SM})$	0.010	0.012	0.011	0.00048	0.00074	0.00084
$S/\sqrt{B} \ (\lambda = 10\lambda_{\rm SM})$	1.0	0.56	0.52	0.062	0.072	0.14
$S/B \ (\lambda = 10\lambda_{\rm SM})$	0.036	0.027	0.026	0.0013	0.0021	0.0027

The Unbearable Lightness of M_H...

Need a cancellation to 33 digits if Λ is at the Planck scale (~10¹⁹ GeV) - fine tuning! Very strong motivation for new physics at TeV scale!