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Neutrino oscillations

The NOvA experiment

νµ disappearance
symmetries in neutrino mixing

νe appearance
neutrino mass ordering
CP-violation

Future
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Neutrinos are everywhere
Solar

12C
13N

13C
14N

15O

15N

1H
1H

1H
1H

4He

Atmospheric

Reactor Supernova I Second most abundant
particle in the universe

I But we know almost
nothing about them

I Only interact via the
weak force

I Need powerful sources
and huge detectors
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Neutrinos are unique
I Far lighter than the quarks and charged leptons
I May get their masses by a different mechanism

m2
EW/mν ∼ 1015 GeV ∼ mGUT

I Very different mixing structure to quarks
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Neutrino flavour mixing

I Neutrinos mix, just like the quarks

|να〉 =
∑

i

U?
αi |νi〉

i = 1,2,3 α = e, µ, τ

I PMNS matrix. ∼CKM matrix for leptons
I Unlike the quarks, mixings are large

4 / 49



Neutrino oscillations

|να〉 =
1√
2

(|ν1〉+ |ν2〉)

|νβ〉 =
1√
2

(|ν1〉 − |ν2〉) m2 > m1
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Neutrino oscillations

|να〉 = cos θ|ν1〉+sin θ|ν2〉 → P(να → να) = 1−sin2 2θ sin2
(

∆m2L
4E

)
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Oscillation structure
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Current world knowledge

U =

 1 0 0
0 c23 s23
0 −s23 c23

 c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13

 c12 s12 0
−s12 c12 0

0 0 1


θ23 ∼ 45◦ θ13 ∼ 8.5◦ θ12 ∼ 33◦

∆m2
32 ∼

±

2.5× 10−3eV2
∆m2

21 ∼ 7.5× 10−5eV2

δCP =?

7 / 49



Current world knowledge

U =

 1 0 0
0 c23 s23
0 −s23 c23

 c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13

 c12 s12 0
−s12 c12 0

0 0 1


θ23 ∼ 45◦ θ13 ∼ 8.5◦ θ12 ∼ 33◦

∆m2
32 ∼

±

2.5× 10−3eV2
∆m2

21 ∼ 7.5× 10−5eV2

δCP =?

ν2

ν1

ν3

m
as
s2

∆m2
atm

Normal Hierarchy

ν3

∆m2
atm

ν2

ν1

Inverted Hierarchy

νe

νµ

ντ

∆m2

∆m2

7 / 49



Current world knowledge

U =

 1 0 0
0 c23 s23
0 −s23 c23

 c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13

 c12 s12 0
−s12 c12 0

0 0 1


θ23 ∼ 45◦ θ13 ∼ 8.5◦ θ12 ∼ 33◦

∆m2
32 ∼ ± 2.5× 10−3eV2

∆m2
21 ∼ 7.5× 10−5eV2

δCP =?

ν2

ν1

ν3

m
as
s2

∆m2
atm

Normal Hierarchy

ν3

∆m2
atm

ν2

ν1

Inverted Hierarchy

νe

νµ

ντ

∆m2

∆m2

7 / 49



Open neutrino questions

I Dirac or Majorana?
I Is ν̄ just a right-handed ν?

I Absolute masses
I Ordering of the mass states
I CP-violation?

I Do ν and ν̄ oscillations differ?
I Random mixing parameters, or

patterns?
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What do we need?

I Requirements for neutrino oscillation experiment
I High power neutrino source
I Large detector
I Good resolution of signal from background
I Good control of systematic uncertainties

I For mass ordering and CP-violation
I Both disappearance (νµ → νµ) and appearance (νµ → νe) modes
I Long baseline
I Ability to study neutrinos and antineutrinos
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The NOvA collaboration

47 institutions, 7 countries, over 200 collaborators
Argonne, Atlantico, Austin, Banaras Hindu, Caltech, CUSAT, Czech Academy of Sciences, Charles, Cincinnati, Colorado State,

Czech Technical University, Dallas, Delhi, Dubna, Fermilab, Goias, IIT-Guwahati, Harvard, Houston, IIT-Hyderabad, Hyderabad,

Illinois Instute of Technology, Indiana, Iowa State, Irvine, Jammu, Lebedev, Michigan State, Minnesota-Twin Cities,

Minnesota-Duluth, INR Moscow, NISR, Panjab, Pittsburg, South Alabama, SDMT, South Carolina, SMU, Stanford, Sussex,

Tennessee, Tufts, UCL, Virginia, Wichita State, William and Mary, Winona State.
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NOvA 10,000ft view
I νµ beam from Fermilab, IL
I Detector 810km away in MN
I Smaller detector onsite to

measure flux before
oscillations

I νµ → νµ

I νµ → νe

I ν̄µ → ν̄µ

I ν̄µ → ν̄e

I Precision measurements of
|∆m2

32| and θ23

I Determine the mass hierarchy
I Search for sin δCP 6= 0
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Making neutrinos

I 120 GeV protons from Main Injector
I Strike graphite target
I Produce mainly π± and K±

I Focused by two magnetic horns
I Allow us to select charge sign for a

neutrino or antineutrino beam

I 675m decay-pipe: π+ → µ+ + νµ

I Muons absorbed by rock
12 / 49





NuMI performance
I World’s highest power neutrino beam
I 700kW design power since June 2016, ∼ 4× 1013 protons / pulse
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I These results use data from Feb 6 2014 to Feb 20 2017
I Beam power ramping up, detector under construction at start
I 8.85× 1020 POT equivalent, about 1.5 years of nominal running
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Detector technology

I 64% liquid scintillator by mass
I 4×6cm resolution, two views for 3D reco.
I 344,000 channels in 14 kton FD, on surface
I 300 ton ND, underground at FNAL
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Assembly





Near Detector



Event topologies

I Very good granularity, especially considering scale
I X0 = 38cm (6 cell depths, 10 cell widths)
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ND neutrinos



FD neutrinos



FD neutrinos



FD neutrinos



What’s new?

I 50% additional data
I Data-driven flux estimates

from MINERvA1

I Retuned cross-section model
I Detector sim. improvements

(Eres : 7%→ 9%)
I Using computer vision

classifier for all analyses
I Analysis improvements

I Resolution binning for νµ

I “Peripheral” sample for νe

1−10 1 10 210 310
γβ

10
P

ho
to

ns
/c

m

NOvA Simulation

Light Models: Normalized to Minimum Ionization

2016 Birks-Chou Model

2017 Birks Model + Cherenkov Light

 390 MeV≈
Proton KE

1 Phys. Rev. D94 (2016) 092005
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Nuclear correlations

I ND data reveals some data/MC disagreement in Ehad spectrum
I Inter-nucleon correlations a hot topic in neutrino xsecs currently
I Evidence for extra “MEC” component from NOvA, MINERvA, etc
I We pick the model that best matches our data, but allow a lot of

freedom in the shape of the energy transfer distribution
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Principle of the νµ measurement
I Separate νµ CC interactions from backgrounds

I Long muon track with distinctive dE/dx easy to spot

I Extrapolate observed ND spectrum to make FD unosc. prediction
I Measure shape of νµ deficit in the FD
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Principle of the νµ measurement
I Separate νµ CC interactions from backgrounds

I Long muon track with distinctive dE/dx easy to spot

I Extrapolate observed ND spectrum to make FD unosc. prediction
I Measure shape of νµ deficit in the FD

I Two flavor approx. works well here

I Pµµ ≈ 1− sin2 2θ23 sin2
(

∆m2
32L

4E

)
I θ23 ≈ 45◦ → almost all νµ expected to

disappear at oscillation max.
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Mixing patterns
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I Only a small fraction of νe in |ν3〉 (sin2 2θ13)
I The remainder is split ∼ 50/50 νµ/ντ (sin2 θ23)
I Accident? Or a sign of underlying structure?

I Is θ23 exactly 45◦?
I If not, is it. . .

I < 45◦ (|ν3〉 more ντ , like the quarks)
I > 45◦ (|ν3〉 more νµ, unlike quarks)
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Selecting muon neutrinos

I Selecting νµ CC relatively easy – long µ track, characteristic dE/dx
I Occasionally a π± from an NC event can be confused
I Use same convolutional neural network (“CVN”) as for νe selection

I Also have to reject cosmic rays, use containment, dir. and size
I Factor 105 from 10µs spill window vs 1Hz beam, 107 from cuts

I 93% pure FD νµ CC sample, 11% higher efficiency than prev. sel.
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νµ energy estimation

I Estimate energy of selected events to trace out osc. structure
I Known muon dE/dx→ Eµ = f (Ltrk) ∼ k × Ltrk

I Hadronic part of the event estimated calorimetrically
I Eν = f (Ltrk ) + Ehad
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νµ energy estimation

(30%)

+

(3%)
I Good data/MC agreement for muon neutrino selected events
I Hadronic scale uncertainty 5%

28 / 49



νµ energy estimation
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νµ resolution bins

Quantile 1

Quantile 2

Quantile 3

Quantile 4

I Bin into 4 equal quantiles by hadronic energy fraction
I Energy resolution varies from ∼ 6% to ∼ 12% between bins
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νµ resolution bins
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Extrapolation procedure

I Translate ND observations to true energy
I Transport to far detector and oscillate
I Smear back to reco energy
I Cosmics prediction from out-of-time data

31 / 49



Extrapolation procedure

I Translate ND observations to true energy
I Transport to far detector and oscillate
I Smear back to reco energy
I Cosmics prediction from out-of-time data

31 / 49



νµ systematics

)2eV-310×(2
32mΔUncertainty on 

0.05− 0 0.05
Statistical error

Total syst. error

ScaleµRel. E
Neutrino Flux

Scintillation Model

ScaleµAbs. E
Normalization

CPδValue of 
Cross Sections

Rel. Calibration
Abs. Calibration

)-310×(23θ2Uncertainty on sin
50− 0 50

Statistical error

Total syst. error
CPδValue of 

Scintillation Model

ScaleµRel. E
Neutrino Flux

Rel. Calibration

ScaleµAbs. E
Normalization

Cross Sections
Abs. Calibration

I Evaluate systematics by replacing nominal MC by shifted versions
I Hard work here means we’re still stats limited
I Calibration and cross-section (MEC) systematics largest
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νµ disappearance results

I Expect 763 FD νµ CC events
with no oscillation

I Observe 126 (inc. 3.4 beam
bkg. and 5.8 cosmic)
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Changes from previous result
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I 〈70 MeV〉 shift in energies→

expect (observe) 0.5 (3) events
migrating out of dip region
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Changes from previous result
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I New simulation
I Some effect from decreased Eres
I 〈70 MeV〉 shift in energies→

expect (observe) 0.5 (3) events
migrating out of dip region

I New selection and analysis
I 5% of mock experiments have a

larger change, mostly driven by
low selection overlap (especially
cosmics)

I New data

I New 2.8× 1020 POT of data
prefers maximal mixing

34 / 49



Changes from previous result
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I New simulation
I Some effect from decreased Eres
I 〈70 MeV〉 shift in energies→

expect (observe) 0.5 (3) events
migrating out of dip region

I New selection and analysis
I 5% of mock experiments have a
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low selection overlap (especially
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I New data
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Aside: sterile neutrinos
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NOvA 90% C.L.
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I Are all the disappearing νµ going to νe or ντ?
I Might some fraction be oscillating to a a 4th,

sterile, state?
I Would expect a depletion of NC events at FD
I Expect 83.5± 9.7(stat)± 9.4(syst) see 95
I Set limits on Uµ4 and Uτ4

Phys. Rev. D 96, 072006 (2017)
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Principle of the νe measurement
I Separate νe CC interactions from beam backgrounds

I Harder problem than νµ CC selection

I Evaluate remaining backgrounds in ND
I Intrinsic beam νe
I Neutral currents
I νµ CC – mostly oscillates away

I An excess in the FD is the sign of νµ → νe oscillations
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I Evaluate remaining backgrounds in ND
I Intrinsic beam νe
I Neutral currents
I νµ CC – mostly oscillates away

I An excess in the FD is the sign of νµ → νe oscillations

I Pµe ≈ sin2 2θ13 sin2 θ23 sin2
(

∆m2
32L

4E

)
+ f (sign(∆m2

32)) + f (δCP)

I θ13 only 8.5◦ degrees, most νµ go to ντ instead
I Sensitive to mass ordering (“hierarchy”), δCP and θ23 octant
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Why hierarchy?
I Is the electron-like state lightest?
I i.e. Does the pattern of the masses match the charged leptons?

I Are neutrinos Majorana particles (ν = ν̄)?
I Observation of 0νββ would be proof they are
I Impact of IH determination: lack of 0νββ implies Dirac nature
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Matter effects

I Electrons in the Earth drag on the “electron” neutrino states
I Sign of the effect opposite for antineutrinos and for NH/IH
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Neutrino/antineutrino symmetry
I Does P(νµ → νe) = P(ν̄µ → ν̄e)?
I Insight into fundamental symmetries of the lepton sector
I “CP violation” – described by oscillation parameter δCP

I Why is the universe not equal
parts matter and antimatter?

I Need ppb early universe asymm.
I Existing CP-violation insufficient
I “Leptogenesis”: generate ν/ν̄

imbalance, transfer to baryons

I Require neutrino appearance experiment to discover
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Principle of the νe measurement
I To first order, NOvA

measures P(νµ → νe)
and P(ν̄µ → ν̄e)
evaluated at 2GeV

I These depend
differently on
sign(∆m2

32) and δCP

I Ultimately constrain to
some region of this
space

I P also ∝ sin2 θ23
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Peripheral sample
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I Events that fail containment and cosrej
cuts given a second chance

I Require high CVN score plus specialized
cosmic rejection BDT

I Equivalent to 16% more exposure

DATA

Preselection cuts

Cosmic Rejection cuts

CVN PID cut CVN and BDT cut

Low 
PID

Mid. 
PID

High 
PID

Basic Quality cuts

selection

Peripheral 
bin

Peripheral Preselection

⌫e

no

no

| {z } | {z }
Core sample Peripheral sample

41 / 49



Sample composition
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I Break spectrum down into 3 PID bins (low to high purity)
I Plus additional peripheral sample
I Backgrounds predominantly have EM activity:
π0 → γγ or intrinsic beam νe
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Making FD bkg prediction

I Use ND data to predict three
FD background components

I Beam νe CC
I NC
I νµ CC

(GeV)recoE
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I Can separate statistically:
I νe/νµ share common π+/K + ancestors
I µ in νµ CC events leaves decay electron
I Beam νe ↑1%, NC ↑20%, νµ CC ↑10%
I Extrapolate 3 components for FD prediction
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Event count expectations
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20.5 6.6 7.1 1.1 0.3 4.9 ±10% syst.

Essentially independent of oscillation parameters
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νe systematics

Background Uncertainty (%)
30− 20− 10− 0 10 20 30

Statistical error
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Detector Response
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Cross Sectionsν
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I Dominated by statistics and then cross sections (MEC shape)
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νe appearance results
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I Observe 66 events passing νe selection
I On 20.5 background
I Towards the higher end of expectations
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νe fit results

I Joint fit from νµ and νe spectra
I Constrain θ13 to reactor avg.

sin2 2θ13 = 0.082± 0.005

I Prefer NH and (weakly)
δCP ∼ 3π/2

I IH disfavoured at 2σ level
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NOvA future sensitivity

Total events - neutrino mode
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I Currently favoured values
avoid ambiguous region

I Will release large sample
(∼ 7× 1020 POT) of
antineutrino data in June

I 4σ hierarchy measurement by
end of experiment?
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Conclusion
I Muon neutrino disappearance now

compatible with maximal
I Very competitive measurement of ∆m2

32

I νe appearance favours NH, δCP ∼ 3π/2
I IH at δCP = π/2 disfavoured at >3σ,

approaching 2σ IH rejection

I Syst. reductions from testbeam this year
I Opening large sample of antineutrinos at

Neutrino 2018

I Stay tuned!
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Thank you!



Backup



Particle physics confidence levels

Significance Confidence level
1σ 68.3%
2σ 95.5%
3σ 99.7%
4σ 99.994%
5σ 99.99994%

52 / 49



Neutrino oscillations
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Event reconstruction

I First cluster hits in space and time

I Start with 2-point Hough transform
I Line-crossing are vertex seeds

I ElasticArms finds vertex
I Fuzzy k -means clustering forms

prongs

I νµ analysis uses a Kalman filter to
reconstruct any muon track
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Calibration and energy scale
I Response varies substantially

along cell due to light atten.
I Use cosmic ray muons as a

standard candle to calibrate
300,000 channels individually

I Use dE/dx near the end of
stopping muon to set abs.
scale

I Multiple calibration x-checks

I Beam muon dE/dx
I Michel energy spectrum
I π0 mass peak
I Hadronic energy/hit

I Take 5% abs. and rel. errors
on energy scale Average Hadronic Energy Per Hit (GeV)
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Convolutional Neural Networks

I Recent advances in machine learning/computer vision
I Achieving near-human performance on image classification tasks
I Why not classify event-displays?
I CNN – deep neural network, inputs are the pixels of the image
I Take advantage of translational invariance→ convolutions
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Convolutional Neural Networks

FEATURE MAPS
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CVN architecture
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CVN example
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ND decomposition – beam νe
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I Low-E νµ and νe trace back to the same π+ ancestors
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ND decomposition – Michels

Number of Michels
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I νµ CC background events have Michel electron from muon decay
I Also produced in νe CC and NC by pions, but νµ have ∼ 1 more
I Fit observed Nmichel spectrum in each bin by varying components
I νe and NC near-degenerate, fix νe to parent-reweight estimate
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νe selection efficiency – MRE

I EM showers should be well modelled
I Any νe signal efficiency differences

coming from the hadronic side?
I Remove muon from clear νµ CC

events in ND, replace with simulated
shower

I O(1%) efficiency difference to select MRE data/MC events
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νe selection efficiency – EM activity

Brem shower

I Find FD data cosmic rays w/
brems

I Remove µ leaving pure EM
activity

I Run through PID in data and MC
I Very good agreement  selectoreνCVN 
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Evolution of νµ result
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Cross-sections

I Neutrino cross-sections poorly known
I Learn about nuclear physics
I Interpretation of other experiments
I Important for precision future
I High powered beam, fine-grained ND
I Many channels to study
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Sterile neutrinos

I More than the standard three neutrino
states?

I There can only be three light “active”
flavors

I “Sterile” neutrinos natural in some models

I νµ disappearance isn’t entirely
to νs, we see νe appear,
OPERA sees ∼ expected
number of ντ

I Could be a smaller admixture.
Wouldn’t interact even by NC,
look for a deficit in FD and ND

I Hints for νµ → νe at a small
rate over short L, look in ND
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Principle of the NC measurement
I Where do those νµ go?
I Do any oscillate to a sterile state? (νs)

I NC spectrum unaffected by oscillations among active flavours
I Select NC events in ND, extrapolate to FD prediction
I Count NC events in FD, compare to prediction
I Fix ∆m2

41 = 0.5 eV2, rapid osc in FD, minimal in ND
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Supernova neutrinos

I Last (near)galactic supernova SN1987a
I 19 νs observed (Kamiokande and IMB)
I Detectors have improved a lot, expect

1000s of events
I Low E for NOvA, hook into SNEWS
I Astrophysical and ν information
I Expected rate “few / century”
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Monopole search

I Magnetic monopole would produce straight track with high dE/dx
I High mass monopole would travel notably slowly
I Large detector on surface→ lower mass range
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Dark matter

I DM annihilation in sun produces
neutrinos visible in the detector

I High cosmic ray rate→ look for upward
events at night

I Same directional sensitivity used for
atmospheric neutrinos

I Light dark matter could be produced in the target by the beam
I Interact in the Near Detector
I Sensitive to mass range below threshold of direct-detection expts
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