New results from NOvA

UC

UCL HEP seminar January 19, 2018

Chris Backhouse

The NOvA experiment

u_{μ} disappearance

symmetries in neutrino mixing

ν_e appearance

neutrino mass ordering

CP-violation

Future

Neutrinos are everywhere

Solar

Atmospheric

Reactor

FACT: about 65 million neutrinos pass through your thumbnail every second.

- Second most abundant particle in the universe
- But we know almost nothing about them
- Only interact via the weak force
- Need powerful sources and huge detectors

Neutrinos are unique

- Far lighter than the quarks and charged leptons
- May get their masses by a different mechanism
 - $m^2_{
 m EW}/m_
 u \sim 10^{15}\,{
 m GeV} \sim m_{
 m GUT}$

u

C

t

Very different mixing structure to quarks

Neutrino flavour mixing

Neutrinos mix, just like the quarks

$$|
u_{lpha}
angle = \sum_{i} U^{\star}_{lpha i} |
u_{i}
angle$$

i = 1, 2, 3 $\alpha = e, \mu, \tau$

- PMNS matrix. ~CKM matrix for leptons
- Unlike the quarks, mixings are large

$$|
u_{lpha}
angle = rac{1}{\sqrt{2}}\left(|
u_1
angle + |
u_2
angle
ight)$$

$$|
u_{lpha}
angle = rac{1}{\sqrt{2}}\left(|
u_1
angle + |
u_2
angle
ight)$$

.

 $m_2 > m_1$

Neutrino oscillations $|\nu_{\alpha}\rangle = \frac{1}{\sqrt{2}}(|\nu_{1}\rangle + |\nu_{2}\rangle) \qquad |\nu_{\beta}\rangle = \frac{1}{\sqrt{2}}(|\nu_{1}\rangle - |\nu_{2}\rangle) \qquad m_{2} > m_{1}$

 $|\nu_{\alpha}\rangle = \cos\theta |\nu_{1}\rangle + \sin\theta |\nu_{2}\rangle \quad \rightarrow \quad P(\nu_{\alpha} \rightarrow \nu_{\alpha}) = 1 - \frac{\sin^{2} 2\theta}{\sin^{2} \left(\frac{\Delta m^{2} L}{4E}\right)}$

Oscillation structure

Current world knowledge

$$U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Current world knowledge

$$U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$heta_{12}\sim 33^\circ$$
 $\Delta m^2_{21}\sim 7.5 imes 10^{-5} {
m eV}$

Current world knowledge

$$U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Open neutrino questions

- Dirac or Majorana?
 - Is $\bar{\nu}$ just a right-handed ν ?
- Absolute masses
- Ordering of the mass states
- ► CP-violation?
 - Do ν and $\bar{\nu}$ oscillations differ?
- Random mixing parameters, or patterns?

What do we need?

Requirements for neutrino oscillation experiment

- High power neutrino source
- Large detector
- Good resolution of signal from background
- Good control of systematic uncertainties

What do we need?

Requirements for neutrino oscillation experiment

- High power neutrino source
- Large detector
- Good resolution of signal from background
- Good control of systematic uncertainties
- ► For mass ordering and CP-violation
 - ▶ Both disappearance ($\nu_{\mu} \rightarrow \nu_{\mu}$) and appearance ($\nu_{\mu} \rightarrow \nu_{e}$) modes
 - Long baseline
 - Ability to study neutrinos and antineutrinos

The NOvA collaboration

47 institutions, 7 countries, over 200 collaborators

Argonne, Atlantico, Austin, Banaras Hindu, Caltech, CUSAT, Czech Academy of Sciences, Charles, Cincinnati, Colorado State, Czech Technical University, Dallas, Delhi, Dubna, Fermilab, Goias, IIT-Guwahati, Harvard, Houston, IIT-Hyderabad, Hyderabad, Illinois Instute of Technology, Indiana, Iowa State, Irvine, Jammu, Lebedev, Michigan State, Minnesota-Twin Cities, Minnesota-Duluth, INR Moscow, NISR, Panjab, Pittsburg, South Alabama, SDMT, South Carolina, SMU, Stanford, Sussex, Tennessee, Tufts, UCL, Virginia, Wichita State, William and Mary, Winona State.

NOvA 10,000ft view

- ν_{μ} beam from Fermilab, IL
- Detector 810km away in MN
- Smaller detector onsite to measure flux before oscillations

$$\begin{split} \blacktriangleright & \nu_{\mu} \rightarrow \nu_{\mu} & \qquad \blacktriangleright & \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu} \\ \blacktriangleright & \nu_{\mu} \rightarrow \nu_{e} & \qquad \blacktriangleright & \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} \end{split}$$

- ► Precision measurements of |∆m²₃₂| and θ₂₃
- Determine the mass hierarchy
- Search for $\sin \delta_{CP} \neq 0$

- 120 GeV protons from Main Injector
- Strike graphite target
- Produce mainly π^{\pm} and K^{\pm}
- Focused by two magnetic horns
- Allow us to select charge sign for a neutrino or antineutrino beam
- ▶ 675m decay-pipe: $\pi^+ \rightarrow \mu^+ + \nu_\mu$
- Muons absorbed by rock

NuMI performance

- World's highest power neutrino beam
- ▶ 700kW design power since June 2016, \sim 4 × 10¹³ protons / pulse

- These results use data from Feb 6 2014 to Feb 20 2017
- Beam power ramping up, detector under construction at start
- ▶ 8.85×10^{20} POT equivalent, about 1.5 years of nominal running

Detector technology

To 1 APD pixel

- ▶ 64% liquid scintillator by mass
- ► 4×6cm resolution, two views for 3D reco.
- ▶ 344,000 channels in 14 kton FD, on surface
- ► 300 ton ND, underground at FNAL

Assembly

Near Detector

Event topologies

Very good granularity, especially considering scale
 X₀ = 38cm (6 cell depths, 10 cell widths)

Event topologies

Very good granularity, especially considering scale
 X₀ = 38cm (6 cell depths, 10 cell widths)

ND neutrinos

FD neutrinos

FD neutrinos

FD neutrinos

What's new?

- 50% additional data
- Data-driven flux estimates from MINERvA¹
- Retuned cross-section model
- ► Detector sim. improvements (*E*_{res} : 7% → 9%)
- Using computer vision classifier for all analyses
- Analysis improvements
 - Resolution binning for ν_{μ}
 - "Peripheral" sample for ν_e

¹ Phys. Rev. D94 (2016) 092005

Nuclear correlations

- ► ND data reveals some data/MC disagreement in *E*_{had} spectrum
- Inter-nucleon correlations a hot topic in neutrino xsecs currently
- ► Evidence for extra "MEC" component from NOvA, MINERvA, etc
- We pick the model that best matches our data, but allow a lot of freedom in the shape of the energy transfer distribution

Nuclear correlations

- ND data reveals some data/MC disagreement in E_{had} spectrum
- Inter-nucleon correlations a hot topic in neutrino xsecs currently
- Evidence for extra "MEC" component from NOvA, MINERvA, etc
- We pick the model that best matches our data, but allow a lot of freedom in the shape of the energy transfer distribution
Nuclear correlations

- ► ND data reveals some data/MC disagreement in *E*_{had} spectrum
- Inter-nucleon correlations a hot topic in neutrino xsecs currently
- ► Evidence for extra "MEC" component from NOvA, MINERvA, etc
- We pick the model that best matches our data, but allow a lot of freedom in the shape of the energy transfer distribution

• Separate ν_{μ} CC interactions from backgrounds

- Long muon track with distinctive dE/dx easy to spot
- Extrapolate observed ND spectrum to make FD unosc. prediction
- Measure shape of ν_{μ} deficit in the FD

• Separate ν_{μ} CC interactions from backgrounds

- Long muon track with distinctive dE/dx easy to spot
- Extrapolate observed ND spectrum to make FD unosc. prediction
- Measure shape of ν_{μ} deficit in the FD
- ► Two flavor approx. works well here
- $\blacktriangleright P_{\mu\mu} \approx 1 \sin^2 2\theta_{23} \sin^2 \left(\frac{\Delta m_{32}^2 L}{4E} \right)$
- θ₂₃ ≈ 45° → almost all ν_µ expected to disappear at oscillation max.

Mixing patterns

V2

- Only a small fraction of ν_e in $|\nu_3\rangle$ (sin² 2 θ_{13})
- The remainder is split $\sim 50/50 \ \nu_{\mu}/\nu_{\tau}$ (sin² θ_{23})
- Accident? Or a sign of underlying structure?
- ► Is θ₂₃ exactly 45°?
- ► If not, is it...
 - <45° ($|
 u_3
 angle$ more $u_{ au}$, like the quarks)
 - > 45° ($|\nu_3\rangle$ more ν_{μ} , unlike quarks)

- Selecting ν_{μ} CC relatively easy long μ track, characteristic dE/dx
- \blacktriangleright Occasionally a π^{\pm} from an NC event can be confused
- ► Use same convolutional neural network ("CVN") as for v_e selection
- ► Also have to reject cosmic rays, use containment, dir. and size
- ► Factor 10⁵ from 10µs spill window vs 1Hz beam, 10⁷ from cuts
- ▶ 93% pure FD ν_{μ} CC sample, 11% higher efficiency than prev. sel.

u_{μ} energy estimation

- Ltrk Ehad
- ► Estimate energy of selected events to trace out osc. structure
- ► Known muon dE/dx \rightarrow $E_{\mu} = f(L_{trk}) \sim k \times L_{trk}$
- Hadronic part of the event estimated calorimetrically

•
$$E_{\nu} = f(L_{trk}) + E_{had}$$

u_{μ} energy estimation

- Good data/MC agreement for muon neutrino selected events
- ► Hadronic scale uncertainty 5%

ν_{μ} energy estimation

- Good data/MC agreement for muon neutrino selected events
- ► Hadronic scale uncertainty 5%

u_{μ} resolution bins

- ► Bin into 4 equal quantiles by hadronic energy fraction
- Energy resolution varies from \sim 6% to \sim 12% between bins

u_{μ} resolution bins

Extrapolation procedure

Translate ND observations to true energy

- Transport to far detector and oscillate
- Smear back to reco energy
- Cosmics prediction from out-of-time data

Extrapolation procedure

- Translate ND observations to true energy
- Transport to far detector and oscillate
- Smear back to reco energy
- Cosmics prediction from out-of-time data

ν_{μ} systematics

- ► Evaluate systematics by replacing nominal MC by shifted versions
- Hard work here means we're still stats limited
- Calibration and cross-section (MEC) systematics largest

NOvA Preliminary

- Expect 763 FD ν_μ CC events with no oscillation
- Observe 126 (inc. 3.4 beam bkg. and 5.8 cosmic)

- Expect 763 FD ν_μ CC events with no oscillation
- Observe 126 (inc. 3.4 beam bkg. and 5.8 cosmic)

- Expect 763 FD ν_{μ} CC events with no oscillation
- Observe 126 (inc. 3.4 beam bkg. and 5.8 cosmic)

or 0.48⁺

- Expect 763 FD ν_μ CC events with no oscillation
- Observe 126 (inc. 3.4 beam bkg. and 5.8 cosmic)

$$\Delta m_{32}^2 = (2.44 \pm 0.08) \times 10^{-3} \text{eV}^2 \text{ (NH)}$$

$$\sin^2 \theta_{23} = 0.56^{+0.04}_{-0.03} \text{ or } 0.48^{+0.04}_{-0.04}$$

New simulation

- Some effect from decreased Eres
- 〈70 MeV〉 shift in energies → expect (observe) 0.5 (3) events migrating out of dip region

NOvA Preliminary

New simulation

- Some effect from decreased Eres
- 〈70 MeV〉 shift in energies → expect (observe) 0.5 (3) events migrating out of dip region

NOvA Preliminary

New simulation

- Some effect from decreased Eres
- ⟨70 MeV⟩ shift in energies → expect (observe) 0.5 (3) events migrating out of dip region

New selection and analysis

 5% of mock experiments have a larger change, mostly driven by low selection overlap (especially cosmics)

New simulation

- Some effect from decreased Eres
- ⟨70 MeV⟩ shift in energies → expect (observe) 0.5 (3) events migrating out of dip region

New selection and analysis

 5% of mock experiments have a larger change, mostly driven by low selection overlap (especially cosmics)

New data

► New 2.8 × 10²⁰ POT of data prefers maximal mixing

Aside: sterile neutrinos

- Expect $83.5 \pm 9.7(stat) \pm 9.4(syst)$ see 95
- ► Set limits on *U*_{µ4} and *U*₇₄ Phys. Rev. D 96, 072006 (2017)

- Separate v_e CC interactions from beam backgrounds
 - Harder problem than ν_{μ} CC selection
- Evaluate remaining backgrounds in ND
 - ► Intrinsic beam v_e
 - Neutral currents
 - ν_{μ} CC mostly oscillates away
- ▶ An excess in the FD is the sign of $\nu_{\mu} \rightarrow \nu_{e}$ oscillations

- Separate v_e CC interactions from beam backgrounds
 - Harder problem than ν_{μ} CC selection
- Evaluate remaining backgrounds in ND
 - ► Intrinsic beam v_e
 - Neutral currents
 - ▶ ν_µ CC mostly oscillates away
- ▶ An excess in the FD is the sign of $\nu_{\mu} \rightarrow \nu_{e}$ oscillations
- ► $P_{\mu e} \approx \sin^2 2\theta_{13} \sin^2 \theta_{23} \sin^2 \left(\frac{\Delta m_{32}^2 L}{4E}\right) + f(\operatorname{sign}(\Delta m_{32}^2)) + f(\delta_{CP})$
- ▶ θ_{13} only 8.5° degrees, most ν_{μ} go to ν_{τ} instead
- Sensitive to mass ordering ("hierarchy"), δ_{CP} and θ_{23} octant

Why hierarchy?

- Is the electron-like state lightest?
- i.e. Does the pattern of the masses match the charged leptons?

- Are neutrinos Majorana particles ($\nu = \bar{\nu}$)?
- Observation of $0\nu\beta\beta$ would be proof they are
- Impact of IH determination: lack of $0\nu\beta\beta$ implies Dirac nature

- ► Electrons in the Earth drag on the "electron" neutrino states
- Sign of the effect opposite for antineutrinos and for NH/IH

Neutrino/antineutrino symmetry

• Does
$$P(\nu_{\mu} \rightarrow \nu_{e}) = P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$$
?

- Insight into fundamental symmetries of the lepton sector
- "CP violation" described by oscillation parameter δ_{CP}

- Why is the universe not equal parts matter and antimatter?
- Need ppb early universe asymm.
- Existing CP-violation insufficient
- ► "Leptogenesis": generate v/v̄ imbalance, transfer to baryons

► Require neutrino **appearance** experiment to discover

- ► To first order, NOvA measures $P(\nu_{\mu} \rightarrow \nu_{e})$ and $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$ evaluated at 2GeV
- ► These depend differently on sign(△m²₃₂) and δ_{CP}

- ► To first order, NOvA measures $P(\nu_{\mu} \rightarrow \nu_{e})$ and $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$ evaluated at 2GeV
- ► These depend differently on sign(△m²₃₂) and δ_{CP}
- Ultimately constrain to some region of this space

- ► To first order, NOvA measures $P(\nu_{\mu} \rightarrow \nu_{e})$ and $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$ evaluated at 2GeV
- ► These depend differently on sign(△m²₃₂) and δ_{CP}
- Ultimately constrain to some region of this space

• *P* also $\propto \sin^2 \theta_{23}$

sample

Peripheral sample

Sample composition

- Break spectrum down into 3 PID bins (low to high purity)
- Plus additional peripheral sample
- Backgrounds predominantly have EM activity: $\pi^0 \rightarrow \gamma \gamma$ or intrinsic beam ν_e

Making FD bkg prediction

- Use ND data to predict three FD background components
 - ▶ Beam v_e CC
 - ► NC
 - ▶ ν_µ CC

- Can separate statistically:
- ν_{e}/ν_{μ} share common π^{+}/K^{+} ancestors
- μ in ν_{μ} CC events leaves decay electron
- ► Beam ν_e ↑1%, NC ↑20%, ν_μ CC ↑10%
- Extrapolate 3 components for FD prediction

Event count expectations

Total bkg	NC	beam ν_e	$ u_{\mu}$ CC	$ u_{ au}$ CC	cosmics	
20.5	6.6	7.1	1.1	0.3	4.9	\pm 10% syst.

Essentially independent of oscillation parameters

ν_e systematics

Dominated by statistics and then cross sections (MEC shape)
ν_e appearance results

- ► Observe 66 events passing v_e selection
- On 20.5 background
- Towards the higher end of expectations

ν_e fit results

- Joint fit from ν_{μ} and ν_{e} spectra
- Constrain θ₁₃ to reactor avg. sin² 2θ₁₃ = 0.082 ± 0.005

ν_e fit results

- Joint fit from ν_{μ} and ν_{e} spectra
- Constrain θ_{13} to reactor avg. $\sin^2 2\theta_{13} = 0.082 \pm 0.005$
- Prefer NH and (weakly) $\delta_{CP} \sim 3\pi/2$

ν_e fit results

- Joint fit from ν_{μ} and ν_{e} spectra
- ► Constrain θ₁₃ to reactor avg. sin² 2θ₁₃ = 0.082 ± 0.005
- Prefer NH and (weakly) $\delta_{CP} \sim 3\pi/2$
- ► IH disfavoured at 2*σ* level

NOvA future sensitivity

- Currently favoured values avoid ambiguous region
- ► Will release large sample (~ 7 × 10²⁰ POT) of antineutrino data in June
- 4σ hierarchy measurement by end of experiment?

Conclusion

- Muon neutrino disappearance now compatible with maximal
- ► Very competitive measurement of ∆m²₃₂
- ▶ ν_e appearance favours NH, $\delta_{CP} \sim 3\pi/2$
- ► IH at δ_{CP} = π/2 disfavoured at >3σ, approaching 2σ IH rejection
- Syst. reductions from testbeam this year
- Opening large sample of antineutrinos at Neutrino 2018

Stay tuned!

Backup

Particle physics confidence levels

Significance	Confidence level	
1σ	68.3%	
2σ	95.5%	
3σ	99.7%	
4σ	99.994%	
5σ	99.99994%	

Neutrino oscillations

$$\boldsymbol{P}_{\alpha\beta} = \left| \sum_{i} \boldsymbol{U}_{\alpha i}^{\star} \boldsymbol{e}^{-i\boldsymbol{m}_{i}^{2}L/2E} \boldsymbol{U}_{\beta i} \right|^{2}$$

Event reconstruction

- First cluster hits in space and time
- Start with 2-point Hough transform
 - Line-crossing are vertex seeds
- ElasticArms finds vertex
- Fuzzy k-means clustering forms prongs
- ν_μ analysis uses a Kalman filter to reconstruct any muon track

Event reconstruction

- First cluster hits in space and time
- Start with 2-point Hough transform
 - Line-crossing are vertex seeds
- ElasticArms finds vertex
- Fuzzy k-means clustering forms prongs
- ν_μ analysis uses a Kalman filter to reconstruct any muon track

Calibration and energy scale

- Response varies substantially along cell due to light atten.
- Use cosmic ray muons as a standard candle to calibrate 300,000 channels individually
- Use dE/dx near the end of stopping muon to set abs. scale

Calibration and energy scale

- Response varies substantially along cell due to light atten.
- Use cosmic ray muons as a standard candle to calibrate 300,000 channels individually
- Use dE/dx near the end of stopping muon to set abs. scale
- Multiple calibration x-checks
 - Beam muon dE/dx
 - Michel energy spectrum
 - π^0 mass peak
 - Hadronic energy/hit
- Take 5% abs. and rel. errors on energy scale

- Recent advances in machine learning/computer vision
- Achieving near-human performance on image classification tasks
- Why not classify event-displays?
- ► CNN deep neural network, inputs are the pixels of the image
- ► Take advantage of translational invariance → convolutions

$$\frac{1}{8} \begin{bmatrix} -1 & -1 & -1 \\ -1 & +8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Edge-detection kernel

- Recent advances in machine learning/computer vision
- Achieving near-human performance on image classification tasks
- Why not classify event-displays?
- ► CNN deep neural network, inputs are the pixels of the image
- $\blacktriangleright\,$ Take advantage of translational invariance $\rightarrow\,$ convolutions

$$\frac{1}{8} \begin{bmatrix} -1 & -1 & -1 \\ -1 & +8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Edge-detection kernel

- Recent advances in machine learning/computer vision
- Achieving near-human performance on image classification tasks
- Why not classify event-displays?
- CNN deep neural network, inputs are the pixels of the image
- \blacktriangleright Take advantage of translational invariance \rightarrow convolutions

- Recent advances in machine learning/computer vision
- Achieving near-human performance on image classification tasks
- Why not classify event-displays?
- ► CNN deep neural network, inputs are the pixels of the image
- ► Take advantage of translational invariance → convolutions

CVN example

		gradent.	a an		Saure .	la serie e	
<u> </u>		è de la	ģi na sala	Januari		Second	
<u>.</u>					la an the the	S	
	-			han da sa		in de la composition de la composition Esta composition de la	kara.
	l en e				i,		i . ee
		jan kanal		· · · · · · · ·			
	Sector Sector	÷	sec.	jere of the		er e	
i an		in the second se				le de la	in the second

• Low- $E \nu_{\mu}$ and ν_{e} trace back to the same π^{+} ancestors

ND decomposition – Michels

- ν_{μ} CC background events have Michel electron from muon decay
- ► Also produced in ν_e CC and NC by pions, but ν_μ have \sim 1 more
- ► Fit observed N_{michel} spectrum in each bin by varying components
- ▶ ν_e and NC near-degenerate, fix ν_e to parent-reweight estimate

ND decomposition – Michels

- ν_{μ} CC background events have Michel electron from muon decay
- ► Also produced in ν_e CC and NC by pions, but ν_μ have \sim 1 more
- ► Fit observed N_{michel} spectrum in each bin by varying components
- ▶ ν_e and NC near-degenerate, fix ν_e to parent-reweight estimate

ν_e selection efficiency – MRE

- EM showers should be well modelled
- ► Any v_e signal efficiency differences coming from the hadronic side?
- Remove muon from clear ν_μ CC events in ND, replace with simulated shower

► O(1%) efficiency difference to select MRE data/MC events

ν_e selection efficiency – MRE

- EM showers should be well modelled
- ► Any v_e signal efficiency differences coming from the hadronic side?
- Remove muon from clear ν_μ CC events in ND, replace with simulated shower

► O(1%) efficiency difference to select MRE data/MC events

ν_e selection efficiency – MRE

- EM showers should be well modelled
- ► Any v_e signal efficiency differences coming from the hadronic side?
- Remove muon from clear ν_μ CC events in ND, replace with simulated shower

► O(1%) efficiency difference to select MRE data/MC events

ν_e selection efficiency – EM activity

 Find FD data cosmic rays w/ brems

ν_e selection efficiency – EM activity

- Find FD data cosmic rays w/ brems
- Remove µ leaving pure EM activity
- Run through PID in data and MC
- Very good agreement

Evolution of ν_{μ} result

v_µ Result- Comparison To Previous Result 50 🙆 就

Our previous result*: **2.6σ**

Our rejection of maximal mixing has moved from 2.60 to 0.80. This change in the character of our result comes from a few key changes which I'll break down below.

New simulation & Calibration: ~1.8o

Driven by updates to energy response model. Drop to 2.30 expected due to new energy resolution. Additionally we have a <70 MeV> shift in our hadronic energy response. This energy shift would be expected to move 0.5 events out of the "dip" region. However it instead pushes 3 "dip" events past a bin boundary.

New selection and analysis: ~0.50

For combined analysis changes 5% of pseudo-experiments in a MC study had this size shift or larger. This probability is driven by a low expected overlap in background events, and to second order the addition of resolution bins.

New, 3x10²⁰ POT, data prefers maximal mixing.

*Feldman-cousins corrected significance.

A. Radovic, JETP January 2018

Cross-sections

- Neutrino cross-sections poorly known
- Learn about nuclear physics
- Interpretation of other experiments
- Important for precision future
- High powered beam, fine-grained ND
- Many channels to study

Sterile neutrinos

- ν_μ disappearance isn't entirely to ν_s, we see ν_e appear, OPERA sees ~ expected number of ν_τ
- Could be a smaller admixture. Wouldn't interact even by NC, look for a deficit in FD and ND
- ► Hints for v_µ → v_e at a small rate over short L, look in ND

Principle of the NC measurement

- ► Where do those v_µ go?
- Do any oscillate to a sterile state? (v_s)
- NC spectrum unaffected by oscillations among active flavours
- Select NC events in ND, extrapolate to FD prediction
- Count NC events in FD, compare to prediction
- Fix $\Delta m_{41}^2 = 0.5 \,\text{eV}^2$, rapid osc in FD, minimal in ND

Supernova neutrinos

- ► Last (near)galactic supernova SN1987a
- ► 19 *v*s observed (Kamiokande and IMB)
- Detectors have improved a lot, expect 1000s of events
- ► Low *E* for NOvA, hook into SNEWS
- Astrophysical and ν information
- Expected rate "few / century"

Monopole search

- Magnetic monopole would produce straight track with high dE/dx
- High mass monopole would travel notably slowly
- ► Large detector on surface → lower mass range

Dark matter

- ► Light dark matter could be produced in the target by the beam
- Interact in the Near Detector
- Sensitive to mass range below threshold of direct-detection expts