DM@LHC2016: Workshop Impressions

Andreas Korn

University College London (for the ATLAS & CMS Collaborations) Andreas.Korn@cern.ch

im

 \blacksquare

Introduction

Most of the universe can't even be bothered to interact with you.

M. Buckley

Introduction

What do we know?

- How much: Ω_{DM} ≈ 0.26
- Likely particle with non-gravitational interactions
- Dark: \bullet
	- Electrically neutral probably
	- Colour neutral (H-dibaryon...)
- Cold: nonrelativistic during structure formation \bullet
- **Sufficiently long-lived** \bullet
- Non-baryonic (from BBN Ω ^{\approx} 0.04) \bullet

Candidate within the Standard Model of particle physics?

- **Neutrinos**
	- Correspond to hot DM
	- Cannot account for the observed dark matter density

Physics beyond the Standard Model!

Many candidates (theorists are inventive...)

Kai Schmidt-Hoberg | Overview of Dark Matter models | 30 March 2016 | Page 7

m

Introduction

Particle physics candidates

Andreas Korn DM@LHC2016, 30th March

4

Introduction

Freeze out - WIMPs

Kai Schmidt-Hoberg | Overview of Dark Matter models | 30 March 2016 | Page 11

TITLE

Introduction

- Dark Matter (DM) well established:
	- Galaxy rotation
	- CMB measurements
- Three detection methods
	- Direct
	- **Indirect**
	- Production in collisions
		- \rightarrow LHC

direct detection

 $\boldsymbol{\chi}$

Indirect Detection

Indirect Detection: Challenges

Astrophysical backgrounds = Large Systematic Uncertainties

Challenging to model theoretically (e.g., cosmic ray diffusion)

New surprises as experimental sensitivities continue to improve (e.g., millisecond pulsars)

How will we ever know that we have discovered dark matter?

Signal detection in more than one target

Correlate gamma-ray signal with large-scale structure that traces the DM signal

ML, Mishra-Sharma, Rodd, Safdi [in progress]

Mariaangela Lisanti

TITTI

Andreas Korn DM@LHC2016, 30th March

7

InDirect Detection

GeV Photon Excess

Observed at the Galactic Center and Inner Galaxy ($\leq 10^{\circ}$)

Constitutes \sim 10% total flux

High statistical significance

Goodenough and Hooper [0910.2998] Hooper and Goodenough [1010.2752] Boyarsky, Malyshev, Ruchayskiy [1012.5839] Hooper and Linden [1110.0006] Abazajian and Kaplinghat [1207.6047] Gordon and Macias [1306.5725] Abazajian et al. [1402.4090] Daylan et al. [1402.6703] Calore, Cholis, and Weniger [1409.0042] Fermi Collaboration [1511.02938]

TITTI

Daylan et al. [1402.6703]

Introduction

direct detection

- \bullet vector(DM)-vector(SM)
	- stringent limits from spin-independent direct detection
	- best limit: $\mathcal{O}(10^{-45} \text{cm}^2)$ by LUX
- \bullet axial(DM)-axial(SM)
	- not quite so stringent limits from spin-dependent direct detection
	- best limit neutron $\mathcal{O}(10^{-40} \text{cm}^2)$ by LUX
	- best limit proton $\mathcal{O}(10^{-39} \text{cm}^2)$ by PICO
- \bullet vector(DM)-axial(SM)
	- $\blacktriangleright \sigma \propto v^2$ or q^2 and direct detection very suppressed
	- ► essentially no limit (see Del Nobile, Cirelli, Panci 1307.5955 for actual limit)
- axial(DM)-vector(SM)
	- $\triangleright \ \sigma \propto v^2$ or q^2 and direct detection very suppressed
	- \triangleright essentially no limit

S. Vogel

11111

Direct Detection

Direct Detection: Direction!

Directional detection

Directional detection aims at measuring both the recoil energy and direction using gas TPC

Leading experiments are: DRIFT, DM-TPC, MIMAC and Newage Great experimental challenges:

Intrinsic angular resolution: ~20 degrees RMS Thresholds: 1 keV (energy), 10 keV (directional) **Exposure:** \sim 100 g (DRIFT) Target: Fluorine (excellent spin-dependent coupling)

- Thanks to the rotation of Solar System around Galactic Center, WIMPs are coming from Cygnus
- Solar neutrinos are coming from ... the Sun

TITLE

cathode $1.6 \text{ keV} - 3.3 \text{ keV}$ **WIMPs** February collection gap transfer gap June **WIMP Wind Neutrinos** $n_{UCl_{eq,r}}$ drift gap GEM1 10 15 r_{e} coil 220km/s **In detector frame** galactic plane Cygnus GEM2 **WIMPs December** otember **Neutrinos** pixel chip Julien Billard 5 10

Direct Detection

The neutrino background

Julien Billard

11111

Direct Detection

Julien Billard

 $\overline{\mathbf{C}}$

H

formation

DM at the LHC

Monojet $1.$

> Strategy: reconstruction, analysis & interpretation

Other Mono-X $2¹$

- *⊳* Mono-V/γ
- \triangleright Mono-H
- \triangleright DM+HF
- \triangleright H \rightarrow inv
- 3. Alice+LHCb
	- >Dark photons
	- > Dark sectors
- 4. Cosmological constraints
	- >For LHC & FCC
- **Resonances constraints** $5.$

Andreas Korn DM@LHC2016, 30th March

Tristan du Pree

11111

14

DM at the LHC

Gathering the community for a view of the landscape

ATLAS/CMS Dark Matter Forum (2015)

Determined recommended benchmark models for LHC Run 2 searches: emphasis on mediators that could be produced and discovered in the next few years

Joint ATLAS/CMS/theory discussion forum

- Classify benchmark models (simplified models) according to final state signatures
- Propose a small set of simplified models for early Run-2 LHC searches
- Review tools and implementations, stateof-the-art calculations
- Maintain model repository

A. Boveia/S. Malik

DM at the LHC

LHC Dark Matter Working Group (2015-)

http://lpcc.web.cern.ch/lpcc/index.php? page=dm wg

The LHC Dark Matter Working Group (LHC DM WG) brings together theorists and experimentalists to define quidelines and recommendations for the benchmark models, interpretation, and characterisation necessary for broad and systematic searches for dark matter at the LHC.

The LHC DM WG develops and maintains close connections with theorists and other experimental particle DM searches (e.g. Direct and Indirect Detection experiments) in order to help verify and constrain particle physics models of astrophysical excesses, to understand how collider searches and noncollider experiments complement one another, and to help build a comprehensive understanding of viable dark matter models.

arXiv:1603.04156

CERN-LPCC-2016-001

Recommendations on presenting LHC searches for missing transverse energy signals using simplified s-channel models

of dark matter

14 Mar 2016

[hep-ex]

arXiv:1603.04156v1

Antonio Boveia, ^{1,*} Oliver Buchmueller,^{2,*} Giorgio Busoni,³ Francesco D'Eramo.⁴ Albert De Roeck.^{1,5} Andrea De Simone.⁴ Caterina Doglioni,^{7,*} Matthew J. Dolan,³ Marie-Helene Genest.⁸ Kristian Hahn,^{9,•} Ulrich Haisch, ^{10,11,}• Philip C. Harris,¹ Jan Heisig, ¹² Valerio Ippolito, ¹³ Felix Kahlhoefer, ^{14,}* Valentin V. Khoze, ¹⁵ Suchita Kulkarni, ¹⁶ Greg Landsberg, ¹⁷ Steven Lowette.¹⁸ Sarah Malik.² Michelangelo Mangano. Christopher McCabe.^{19,*} Stephen Mrenna.²⁰ Priscilla Pani.²¹ Tristan du Pree,¹ Antonio Riotto,¹¹ David Salek,^{19,22} Kai Schmidt-Hoberg, ¹⁴ William Shepherd, ²³ Tim M.P. Tait.^{24,*} Lian-Tao Wang,²⁵ Steven Worm²⁶ and Kathryn Zurek²⁷

¹CERN, EP Department, CH-1211 Geneva 23, Switzerland ²High Energy Physics Group, Blackett Laboratory, Imperial College, Prince Consort Road London, SW7 2AZ, United Kingdom ³ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, University of Melbourne, 3010. Australia ⁴UC, Santa Cruz and UC, Santa Cruz, Inst. Part. Phys., USA ⁵Antwerp University, B2610 Wilrijk, Belgium ⁶SISSA and INFN Sezione di Trieste, via Bonomea 265, I-34136 Trieste, Italy ⁷ Fysiska institutionen, Lunds universitet, Lund, Sweden ⁸LPSC, Universite Grenoble-Alpes, CNRS/IN2P3, France 9 Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, ¹⁰Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, OX1 3PN, **United Kingdon**

Pilot effort: translation of LHC simplified model results into DMnucleon cross-section plane (DD/ID)

A. Boveia/O. Buchmueller

$Higgs \rightarrow invisible$

- This Higgs boson thing seems like it could be useful $pp \rightarrow (h^{(*)} \rightarrow \chi \chi) + X$
	- Or through extra Higgs(es) in non-minimal models
- Combined limit on BR($H_{125} \rightarrow \text{inv.}$) $\lesssim 0.25$ \bullet

M. Buckley/P.Dunn

TITLE

Andreas Korn DM@LHC2016, 30th March

17

More exotic searches

Tristan du Pree (CERN), DM@LHC (1 April 2016)

38

Displaced jets

- $H \to \pi_{v}(bb)\pi_{v}(bb)$
	- >Hidden valley long-lived particles
- Low mass
	- ≥ 25 GeV 50 GeV
- **Displaced bb**
	- > 0.4 mm 4.8 mm

Eur.Phys.J.C75(2015)152

LHCb advantages

- \cdot Triggers: low-mass&p $_{\rm T}$ > Upgrade: full software trigger
- Vertex resolution
	- \triangleright Critical for displaced searches

DM@LHC: see Swagata Mukherjee for Atlas+CMS long lived

TIMM)

DM: Latest results in the mono-jet and di-jet channels

Andreas Korn

University College London (for the ATLAS & CMS Collaborations) Andreas.Korn@cern.ch

Introduction

- Dark Matter (DM) well established:
	- Galaxy rotation
	- CMB measurements
- Three detection methods
	- Direct
	- **Indirect**
	- Production in collisions
		- \rightarrow LHC

direct detection

 χ

DM at LHC:Models

DM at LHC:Models

$$
\mathcal{L}_{\text{vector}} = g_q \sum_{q=u,d,s,c,b,t} Z'_{\mu} \bar{q} \gamma^{\mu} q + g_{\chi} Z'_{\mu} \bar{\chi} \gamma^{\mu} \chi
$$

 $\mathcal{L}_{\text{axial-vector}} = g_q \sum_{q=u,d,s,c,b,t} Z'_{\mu} \bar{q} \gamma^{\mu} \gamma^5 q + g_{\chi} Z'_{\mu} \bar{\chi} \gamma^{\mu} \gamma^5 \chi.$

$$
\mathcal{L}_{\text{scalar}} = -g_{\text{DM}} \phi \bar{\chi} \chi - g_q \frac{\phi}{\sqrt{2}} \sum_{q=u,d,s,c,b,t} y_q \bar{q} q ,
$$

$$
\mathcal{L}_{\text{pseudo-scalar}} = -ig_{\text{DM}} \phi \bar{\chi} \gamma_5 \chi - ig_q \frac{\phi}{\sqrt{2}} \sum_{q=u,d,s,c,b,t} y_q \bar{q} \gamma_5 q
$$

• Move towards simplified models

- \bullet + recommendations from DM@LHC14 (arXiv:hep-ph/1506.03116)
- \bullet \rightarrow recommendations from LHCDMWG (arXiv:hep-ex/1603.04156, arXiv:hep-ex/1507.00966)
- Parameters: m _{DM}, m_{mediator}, g DM , g q
- **Benchmark models**
- m DM vs m mediator plane, couplings
- Vector DM $= 1 ; g$ q $= 0.25$

DM

 $= 1 ; g$

 $= 1 ; g$

q

 $= 0.25$

 $= 1$

- Axial-Vector : g
- Scalar
- DM q ● Pseudo-Scalar: g DM $= 1 ; g$ q $= 1$

DM at LHC

- DM χ couples loosely to SM particles (quarks q) through a mediator
- \rightarrow mediator couples to DM χ with g DM and to SM quark with g q
- Can't reconstruct DM in detector \rightarrow need accompanying signature
- Mediator can decay into quark (jet) pairs

m

DM at LHC

Other DM signals at the LHC

- Can't reconstruct DM in detector \rightarrow missing momentum \rightarrow need accompanying signature
- Differentiate channels by accompanying signature

Missing transverse Energy MET

formation

Missing transverse Energy MET

m_m

Mono-Jet

m_m **Cd**

28

Mono-Jet: Backgrounds

11111

Mono-Jet

TITTI

Mono-Jet

Comparison with Direct Detection

- Translate into DM-nucleon cross sections
- Spin dependent (SD) or independent (SI) according to mediator model used
- Note: Comparisons model dependent!
- LHC experiments provide complementary coverage!

DiJet Events

 $\frac{1}{\ln(1+\epsilon)}$ $\overline{}$

Introduction: Dijet resonances

- Look for resonant qq, gq and gg states
- Benchmark search for new physics
- Construct dijet mass
- Fit smooth spectrum • $f(x) = p_1(1-x)^{p_2}x^{p_3+p_4\ln x}$
• Look for deviations
- \rightarrow Bumphunter
	- \rightarrow Tailhunter
- Limits on acceptance times x-section and specific models

Dijet resonances

- Selection
	- \bullet p T > 440 GeV

•
$$
|y^*| = \frac{1}{2} |y_1 - y_2| < 0.6
$$

- Background from fit
- BumpHunter indicates most discrepant interval (not so exciting at all)

Physics Letters B 754 (2016) 302-322 http://dx.doi.org/10.1016/j.physletb.2016.01.032

37

●Excluded masses: String resonance (7.0 TeV) , scalar di-quark (6.0 TeV), axigluon (5.1 TeV), excited quark q* (5.0 TeV), Heavy W' (2.6 TeV)

Dijet Events at low mass

Andreas Korn DM@LHC2016, 30th March

illill

Di-beauty-Jets

• Third Generation (top & bottom) heavy, might be special \rightarrow investigate couplings to b

- Needs identification of jets containing bottom hadrons \rightarrow b-tagging
- Depending on decay (bb, bq, bg) \rightarrow at least 1 or 2 b-tags

TITTE

• Possible qg background reduction also for $X \rightarrow$ qg modes

Di-beauty-Jets

2

T 1 • Limit $|\eta|$ < 2.5, to tracking coverage for b-tagging

illill

 $arXiv:1603.08791v1$ [hep-ex]

Di-beauty-Jets

- Limits on benchmark models
- Excited quarks $b^* \rightarrow bg$
	- $\bullet \geq 1$ b-tag
	- Excluded masses 1.1-2.1 TeV

●Extra Gauge Bosons Z'

- \bullet 2 b-tag
- Leptophobic Z'
- Excluded masses 1.1-1.5 TeV
- Sequential Standard Model $(SSM) \rightarrow SM couplings$
- Not enough data to exclude Sequential SM Z'

arXiv:1603.08791v1 [hep-ex]

Di-b-Jets: what about 750 GeV ?

Summary

Putting it together: Global Fits!

Evidence from Astroparticle physics

- Dark Matter
- Assumptions

11111

Theoretical connections

- Supersymmetry
- **Extra Dimensions**

 $\cdot \dots$, ??

Consequences for LHC

- LHC phenomenology
- **Model testing** \bullet

S. Caron

Putting it together: Global Fits!

GAMBIT: a second-generation global fit code

GAMBIT: The Global And Modular BSM Inference Tool

Overriding principles of GAMBIT: flexibility and modularity

- General enough to allow fast definition of new datasets and theoretical models
- Plug and play scanning, physics and likelihood packages
- \bullet Extensive model database $-$ not just small modifications to constrained MSSM (NUHM, etc), and not just SUSY!
- Extensive observable/data libraries (likelihood modules)
- Many statistical options Bayesian/frequentist, likelihood definitions, scanning algorithms
- A smart and *fast* LHC likelihood calculator
- Massively parallel
- Full open-source code release

Pat Scott

The Future?

The Future of Simplified Models

Joachim Kopp

Tables, tables, tables

Tally

In total 161 simplified models (defined by representations of DM, X and M)

49 s-channel, 105 t-channel, 7 hybrid

Joachim Kopp

Conclusion

- The hunt for Dark Matter continues
- Very nice and constructive workshop <https://indico.cern.ch/event/342623>
- ATLAS and CMS have new interesting results
- Just the beginning of 13 TeV running ...
- LHC searches complementary to direct searches
- Jet channels are particularly sensitive
- Search for both DM and mediator candidates
- Model dependence in Interpretation
	- LHCDMWG Recommendations should unify approaches and help comparisons
- Hope presenting hard work on LHC measurements has the right consequences

Consequences

Bonus Slides

ATLAS: a particle detector at the LHC

Technicalities: narrow width

The narrow-width approximation

width, even for resonances normally considered narrow. The extreme end of this tail due to the PDFs is sometimes suppressed in the searches by requiring the partons to be have mass close to the pole mass, within a few standard deviations on the dijet mass resolution. This is generally a reasonable solution for the shapes, as the QCD background overwhelms the signal at low dijet mass. However, the way that this tail from PDFs is handled can significantly affect the total resonance cross section quoted for specific models, as we discuss in Appendix A

Narrow width approximation:

• Approximate the true resonance shape with a delta function

• This avoids low-mass tails as PDFs will act only in the surrounding of the peak

$$
\sigma_{had}(m_R) = 16\pi^2 \times \mathcal{N} \times \mathcal{A}_{\cos\theta^*} \times BR \times \left[\frac{1}{s} \frac{dL(\bar{y}_{min}, \bar{y}_{max})}{d\tau}\right]_{\tau = m_R^2/s} \times \frac{\Gamma_R}{m_R}, \tag{44}
$$

there the parton luminosity $\frac{dL}{d\tau}$ is calculated at $\tau = m_R^2/s$, and constrained in the Searches for Dijet Resonances at Hadron Colliders inematic range $[\bar{y}_{min}, \bar{y}_{max}].$

Rapidity distribution, Selection

Beauty-jets and missing E.

Eur. Phys. J. C (2015) 75:92 DOI 10.1140/epjc/s10052-015-3306-z

form \blacktriangleleft

Direct Detection

Mono-Jet

form

Mono-Jet

Eur. Phys. J. C (2015) 75:299 DOI 10.1140/epjc/s10052-015-3517-3

Andreas Korn DM@LHC2016, 30th March

58

Mono-Jet

Im

Eur. Phys. J. C (2015) 75:299 DOI 10.1140/epjc/s10052-015-3517-3

Andreas Korn DM@LHC2016, 30th March

59

Mono-Jet

Eur. Phys. J. C (2015) 75:235 DOI 10.1140/epjc/s10052-015-3451-4

Andreas Korn DM@LHC2016, 30th March

 $\overline{\mathbf{C}}$

m_m

 \blacksquare

TITTI

Di-beauty-Jets

• Gaussian limits: model independent approach

Andreas Korn DM@LHC2016, 30th March

61

Di-Jet

Physics Letters B 754 (2016) 302-322 http://dx.doi.org/10.1016/j.physletb.2016.01.032

m

Andreas Korn DM@LHC2016, 30th March

62