

Some LHC Excesses: di di di

Ben Allanach (University of Cambridge)

- Anatomy of the Run I di-boson excess
- Heavy vector triplet explanation
- Resonant sneutrino explanation in RPV
- Resonant sneutrino explanation for di-photons

Science & Technolog

Ben Allanach on the impure fun of rapid-response physics

Science & Technolog

Speed is important Photograph: MACIEJ NOSKOWSKI/Getty Images

Ben Allanach

Selection Bias

partial data

full data

full data

ATLAS SUSY Searches* - 95% CL Lower Limits ATLAS Prelimina									
Sta	itus: Feb 2015						\sqrt{s} = 7, 8 TeV		
	Model	e, μ, τ, γ	Jets	$E_{ m T}^{ m miss}$	∫ <i>L dt</i> [fb	-1] Mass limit	Reference		
clusive Searches	$ \begin{array}{l} MSUGRA/CMSSM \\ \bar{q}\bar{q}, \bar{q} \rightarrow q \bar{\chi}_{1}^{0} \\ \bar{q}\bar{q}\gamma, \bar{q} \rightarrow q \bar{\chi}_{1}^{0} \\ \bar{q}\bar{z}\gamma, \bar{q} \rightarrow q \bar{\chi}_{1}^{0} \\ \bar{g}\bar{g}, \bar{g} \rightarrow q \bar{q} \bar{\chi}_{1}^{0} \\ \bar{g}\bar{g}, \bar{g} \rightarrow q \bar{q} \bar{\chi}_{1}^{+} \rightarrow q q W^{\pm} \bar{\chi}_{1}^{0} \\ \bar{g}\bar{g}, \bar{g} \rightarrow q q (\ell \ell / (\nu / \nu) \bar{\chi}_{1}^{0} \\ \bar{g} GMSB (\bar{\ell} NLSP) \\ GGM (bino NLSP) \\ GGM (wino NLSP) \end{array} $	$0 \\ 0 \\ 1 \gamma \\ 0 \\ 1 e, \mu \\ 2 e, \mu \\ 1-2 \tau + 0-1 \ell \\ 2 \gamma \\ 1 e, \mu + \gamma $	2-6 jets 2-6 jets 0-1 jet 2-6 jets 3-6 jets 0-3 jets 0-2 jets	Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20 20 20 20.3 20.3 2	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1405.7875 1405.7875 1411.1559 1405.7875 1501.03555 1501.03555 1407.0603 ATLAS-CONF-2014-001 ATLAS-CONF-2012-144		
5	GGM (higgsino-bino NLSP) GGM (higgsino NLSP) Gravitino LSP	γ 2 e, μ (Z) 0	1 <i>b</i> 0-3 jets mono-jet	Yes Yes Yes	4.8 5.8 20.3	ž 900 GeV m(ξ_1^0)>220 GeV ž 690 GeV m(NLSP)>200 GeV F ^{1/2} scale 865 GeV m(\tilde{c})>1.8 × 10 ⁻⁴ eV, m(\tilde{g})=n(\tilde{q})=1.5 TeV	1211.1167 ATLAS-CONF-2012-152 1502.01518		
§ med.	$\begin{array}{l} \bar{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0} \\ \bar{g} \rightarrow t \tilde{\chi}_{1}^{0} \\ \bar{g} \rightarrow t \tilde{\chi}_{1}^{0} \\ \bar{g} \rightarrow b \tilde{t} \tilde{\chi}_{1}^{+} \end{array}$	0 0 0-1 <i>e</i> , µ 0-1 <i>e</i> , µ	3 <i>b</i> 7-10 jets 3 <i>b</i> 3 <i>b</i>	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	ž 1.25 TeV m(\tilde{v}_1^0)<400 GeV ž 1.1 TeV m(\tilde{v}_1^0)<350 GeV ž 1.34 TeV m(\tilde{v}_1^0)<400 GeV ž 1.34 TeV m(\tilde{v}_1^0)<400 GeV	1407.0600 1308.1841 1407.0600 1407.0600		
direct production	$ \begin{split} \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{k}_1^0 \\ \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow l \tilde{k}_1^{\pm} \\ \tilde{r}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b \tilde{k}_1^{\pm} \\ \tilde{r}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b \tilde{k}_1^0 \text{ or } t \tilde{k}_1^0 \\ \tilde{r}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{k}_1^0 \\ \tilde{r}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z \end{split} $	$\begin{array}{c} 0 \\ 2 e, \mu (\text{SS}) \\ 1-2 e, \mu \\ 2 e, \mu \\ 0-1 e, \mu \\ 0 & \text{m} \\ 2 e, \mu (Z) \\ 3 e, \mu (Z) \end{array}$	2 <i>b</i> 0-3 <i>b</i> 1-2 <i>b</i> 0-2 jets 1-2 <i>b</i> ono-jet/ <i>c</i> -ta 1 <i>b</i> 1 <i>b</i>	Yes Yes Yes Yes Yes ag Yes Yes Yes	20.1 20.3 4.7 20.3 20 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1308.2631 1404.2500 1209.2102, 1407.0583 1403.4853, 1412.4742 1407.0583,1406.1122 1407.0608 1403.5222 1403.5222		
direct	$ \begin{split} \tilde{\ell}_{L,R} \tilde{\ell}_{L,R}, \tilde{L} \rightarrow \ell \tilde{\chi}_1^0 \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow \tilde{\ell}_V(\ell \tilde{\nu}) \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow \tilde{\tau}_V(\tau \tilde{\nu}) \\ \tilde{\chi}_1^+ \tilde{\chi}_2^0 \rightarrow \tilde{\ell}_L \nu \tilde{\ell}_L(\ell \tilde{\nu}), \ell \tilde{\nu} \tilde{\ell}_L \ell(\tilde{\nu} \nu) \\ \tilde{\chi}_1^+ \tilde{\chi}_2^0 \rightarrow W \tilde{\chi}_1^0 Z \tilde{\chi}_1^0 \\ \tilde{\chi}_1^+ \tilde{\chi}_2^0 \rightarrow W \tilde{\chi}_1^0 \Lambda \tilde{\chi}_1^0 , h \rightarrow b \tilde{b} / W W / \tau \tau / \gamma \\ \tilde{\chi}_2^0 \tilde{\chi}_3^0, \tilde{\chi}_{2,3}^0 \rightarrow \tilde{\ell}_R \ell \end{split} $	2 e, μ 2 e, μ 2 τ 3 e, μ 2-3 e, μ γ e, μ, γ 4 e, μ	0 0 0-2 jets 0-2 <i>b</i> 0	Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294, 1402.7029 1501.07110 1405.5086		
particles	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^+$ Stable, stopped \tilde{g} R-hadron Stable \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{X}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e, p)$ GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_1^0$ $\tilde{q} \tilde{q}, \tilde{\chi}_1^0 \rightarrow q q \mu$ (RPV)	Disapp. trk 0 trk μ) 1-2 μ 2 γ 1 μ , displ. vtx	1 jet 1-5 jets - - -	Yes Yes - Yes -	20.3 27.9 19.1 19.1 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1310.3675 1310.6584 1411.6795 1411.6795 1409.5542 ATLAS-CONF-2013-092		
RPV	$ \begin{array}{l} LFV \ pp \rightarrow \tilde{\mathbf{v}}_{\tau} + X, \tilde{\mathbf{v}}_{\tau} \rightarrow e + \mu \\ LFV \ pp \rightarrow \tilde{\mathbf{v}}_{\tau} + X, \tilde{\mathbf{v}}_{\tau} \rightarrow e(\mu) + \tau \\ Bilinear \ RPV \ CMSSM \\ \tilde{x}_1^{\tau} \tilde{x}_1^{\tau}, \tilde{x}_1^{+} \rightarrow W \tilde{x}_1^{\tau}, \tilde{x}_1^{0} \rightarrow e \tilde{v}_{\mu}, e \mu \tilde{v}_e \\ \tilde{x}_1^{\tau} \tilde{x}_1^{\tau}, \tilde{x}_1^{+} \rightarrow W \tilde{x}_1^{0}, \tilde{x}_1^{0} \rightarrow \tau \tau \tilde{v}_e, e \tau \tilde{v}_{\tau} \\ \tilde{g} \rightarrow q q \\ \tilde{g} \rightarrow \tilde{t}_1 t, \tilde{t}_1 \rightarrow b s \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 1 \ e, \mu + \tau \\ 2 \ e, \mu \ (\text{SS}) \\ 4 \ e, \mu \\ 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu \ (\text{SS}) \end{array}$	- 0-3 <i>b</i> - 6-7 jets 0-3 <i>b</i>	- Yes Yes Yes - Yes	4.6 4.6 20.3 20.3 20.3 20.3 20.3 20.3	\$\vec{v}_r\$ 1.61 TeV $\lambda'_{111}=0.10, \lambda_{132}=0.05$ \$\vec{v}_r\$ 1.1 TeV $\lambda'_{311}=0.10, \lambda_{1233}=0.05$ \$\vec{v}_r\$ 1.35 TeV $m(\vec{v})=m(\vec{v}), r_{LS}<1mm$ \$\vec{v}_1^*\$ 750 GeV $m(\vec{v})=m(\vec{v}), \lambda_{131}=0$ \$\vec{v}_1^*\$ 750 GeV $m(\vec{v})^2 1>0.2 \times m(\vec{v}_1), \lambda_{131}=0$ \$\vec{v}_1^*\$ 916 GeV BR(\nu)=BR(\nu)=BR(\nu)=BR(\nu) \$\vec{v}_2\$ 850 GeV BR(\nu)=BR(\nu)=BR(\nu)=BR(\nu)	1212.1272 1212.1272 1404.2500 1405.5086 1405.5086 ATLAS-CONF-2013-091 1404.250		
ther	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 c	Yes	20.3	2 490 GeV m(\tilde{t}_1^0)<200 GeV	1501.01325		
	$\sqrt{s} = 7 \text{ TeV}$ V	$\overline{s} = 8 \text{ TeV}$	$\sqrt{s} = 3$	8 TeV	1				

ersymmet ambridge 😽 Orking group

Mass scale [TeV]

Searches

Inclusive

gen. squarks ect production

EW

Long-lived

RPV

Othe

Science & Technology

ambridge

ATLAS di-boson excess

Dig fat jets J made out of two smaller jets j with jet substructure techniques. $69.4 < m_J/\text{GeV} < 95.4$ is called a 'W', whereas $79.8 < m_J/\text{GeV} < 105.8$ is called a 'Z'.

Global excess 2.5σ in WZ channel. (Local significance is 3.4σ). CMS finds 1.9σ around 1.9-2 TeV in a boosted search for $WH \rightarrow l\nu jj$. ATLAS, arXiv:1506.00962; CMS, CMS-PAS-EXO-14-0 k@.Allanach-p.4

Other channels

Local significances: 2.6σ (WW), 2.9σ (ZZ), again: all around 2 TeV.

Science & Technology

Event display

persymment, ambridge **5** Örking gro^{nft}

Science & Technology

UCL 2016

B.C. Allanach – p. 6

Analysis Details

Cambridge-Aachen jets: iteratively replace nearest elements with their combination until all remaining pairs are seperated by more than

 $\Delta R = \sqrt{(\Delta y)^2 + (\Delta \phi)^2} = 1.2.$

Jets then *groomed* to find 2 subjets: reverse pairwise construction. At each step, lower-mass subjet is discarded, the higher mass one being considered to be the jet until

$$\sqrt{y} \equiv \min(p_T(j_1), p_T(j_2)) \frac{\Delta R(j_1, j_2)}{m_0} \ge \sqrt{0.2}$$

where m_0 is the mass of the parent jet.

Details II

Selected pair of subjets is then *filtered*: subjets reconstructed with R = 0.3 and all but 3 of highest p_T are discarded.

 $\sqrt{y} \ge 0.45$ at subjets level to discriminate against soft QCD radiation, $n_{\text{tracks}} < 30$ as well.

Science & Technolog

Science & Technology

ambridge

Overlap

BCA, Gripaios, Sutherland, arXiv:1507.01638

$m_j/{ m GeV},{ m jec}$	et 2						W	'W	=	A + B + C,		
105 -	Л	E	F	- 77			·	ZZ	=	C + E + F,		
95 —	Ľ						WZ		=	B + C + D + E,		
	В	C	E			Ţ	WW + A	ZZ	=	A + B + C + E + F,		
$\begin{array}{c} 80 - \\ WW \longrightarrow \end{array}$	Α	В	D	- WZ	V	WW +	WZ + L	ZZ	=	A + B + C + D + E + F		
	$70 m_j/\text{GeV, jet 1}$											
		A	B	C	D	E	F					
$n_i^{\mathrm{obs},1}$		2	6	5	0	4	0	-	C	mad array 2 binar		
$n_i^{\text{obs},2}$		1	7	5	0	3	1		Sum three	possibilities		
$n_i^{\text{obs},3}$	(0	8	5	0	2	2					
$\mu_i^{ ext{SM}}$	2.	.09	2.72	1.00	2.43	0.46	0.34					
	W jet tag only			y W	W and Z jet tag			Z jet tag only				
true W		0.25			0.36 0.39			0.04 0.21		Probabilities		
utrue Z		0.11								B.C. Allanach – p. 9		

Likelihood analysis

How may we take overlap into account?

(1)
$$\mu_i = \mu_i^{SM} + \sum_{j=1}^3 \epsilon b_j s_j M_{ji}$$

 $i \in \{A, B, C, D, E, F\}$. $b_j = \{0.45, 0.47, 0.49\}$ are the totally hadronic branching fractions. $s_j = \{s_{WW}, s_{WZ}, s_{ZZ}\}$ is the number of "truth" signal diboson pairs.

M_{ji}	A	B	C	D	E	F
true WW	0.063	0.182	0.132	0.018	0.025	0.001
true WZ	0.028	0.139	0.143	0.057	0.090	0.007
true ZZ	0.012	0.087	0.155	0.047	0.165	0.044

UCL 2016

TABLE III. Probability of different diboson candidates from a 2 TeV resonance being tagged in each signal region.

Joint likelihood

 $p(\{n_i\}|\{\mu_i\}) =$ $P(n_i|\mu_i),$ $i \in \{A, B, C, D, E, F\}$ $P(n|\mu) = \frac{e^{-\mu}\mu^n}{n!},$ $p(\{n_i^{\mathsf{obs},\alpha}\}|s_{WW}, s_{WZ}, s_{ZZ}) =$ $\sum_{i \in \{A,B,C,D,E,F\}} \left(\mu_i^{SM} + \epsilon \sum_{j=1}^3 b_i s_j M_{ji} \right) \right]$ $\prod_{i \in \{A,B,C,D,E,F\}} n_i^{\mathsf{obs},\alpha}!$ $\alpha = 1$ $\left(\mu_{i}^{SM} + \epsilon \sum_{j=1}^{3} b_{j} s_{j} M_{ji}\right)^{n_{i}^{\text{obs},\alpha}}$ $\underbrace{\operatorname{ucl}\operatorname{201}}_{i\in\{A,B,C,D,E,F\}}$ *B.C. Allanach* – p. 11

Multi-dimensional likelihood

This is turned into a $\chi^2 = -2 \log p(\{n_i^{\text{obs},\alpha}\} | s_{WW}, s_{WZ}, s_{ZZ}), \text{ or a}$ *p*-value:

Science & Technology Facilities Council

UCL 2016

Joint Constraints

Similar results to a global analysis Brehmer et al,

arXiv:1507.00013

New Physics Decalogue

- Require SM symmetry broken by h
- Sizeable signal $\Rightarrow D \le 4$ in production
- Integral spin j

Science & Technolog

- $D \le 4 \Rightarrow j \le 1$
- j = 0 needs EW charge to couple to W/Z. But it would get a VEV $\Rightarrow m_q$ too big
- EFT j = 1: gauge field with EW charge
- $\rho \approx 1 \Rightarrow SU(2)_L \times SU(2)_R$ symmetric: 1 or 3.
- In universal limit, O(1) coupling to quarks is OK.
- (Non-uni coupings correct Γ_Z and CKM unit.).

ambridge Orking groun

Constraints

persymmeny ambridge

Science & Technology

UCL 2016

The Last Refuge of The Scoundrel

$$W_{LV} = \lambda'_{j11}L_1Q_1\bar{D}_1 + \lambda'_{2kl}L_2Q_k\bar{D}_l$$
$$L_{LV}^{soft} = A_{j22}\tilde{l}_j\tilde{l}_2\tilde{\mu}_R^+ + (H.c.)$$

No leptons in final state

B.C. Allanach – p. 17

Consistency

$$d(m_{\tilde{\ell}}^2)_{22}/d\ln\mu = -2|A_{j22}|^2/(16\pi^2) + \dots$$

can turn smuon mass negative. Also, a correction to quartic \tilde{l}_j coupling may be non-perturbative from box with smuons running in the loop:

$$\Delta \lambda_{\tilde{l}_j} \approx -\frac{1}{384\pi^2} \left(\frac{A_{j22}}{\tilde{m}}\right)^4$$

- No leptonic/semi-leptonic states
- No WH states

Could have a stau instead of a smuon

Neutrinoless Double Beta Decay

Is *banned* in the Standard Model because it breaks lepton number: $Z \rightarrow (Z+2)e^-e^-$ Present bound from GERDA is $T_{1/2}^{0\nu} > 2.1 \times 10^{25}$ yr. It should increase by a factor 10 in the next year or so.

Science & Technology

Parameters and $(g-2)_{\mu}$

Science & T

Other Models

- Other initial models: W', Z' models Alves et al, arXiv:1506.06767; Hisano, Nagata and Omura, arXiv:1506.03931; Cheung et al, arXiv:1507.06064; Xue, 1506.05994; Dobrescu and Liu, arXiv:1506.06737; Aguilar-Saavedra, arXiv:1506.06739; Cao, Yan and Zhang, 1507.00268; Cacciapaglia and Frandsen, arXiv://1507.00900; Brehmer et al, arXiv:1507.000013.
- Vector resonances motivated by composite dynamics Franzosi, Frandsen and Sannino, 1506.04392; Thamm, Torre and Wulzer, arXiv:1506.08688
- After the vectors (and our paper) came the scalars and some spin 2 interpretations.

Science & Technolog

ATLAS Run I Excesses

ATLAS claims 2.5σ including LEE from all channels.

Run II Search: ATLAS 13 TeV 3.2fb⁻¹ $l\nu J$

Science & Technology

ersymmet

Orking group

ambridge 😽

ich – p. 23

CMS 13 TeV 2.6 fb⁻¹: $l\nu qq + 4q$

) Science & Technolog Facilities Council

ambridge

B.C. Allanach – p. 24

UCL 2016

Run II: 2 TeV HVT In Trouble

But note: sneutrino is OK because of its hadronic-only decays

Hint of new particle at CERN's Large Hadron Collider?

Particle theorist **Ben Allanach** gives his reaction to yesterday's seminar, where ATLAS and CMS reported on what we have (and have not yet) learned from a year of the highest-energy particle collisions ever achieved

Not that event. Photograph: Fabrice Coffrini/AFP/Getty Images

Ben Allanach Wednesday 16 December 2015 09.26 GMT

I've just finished watching the ATLAS and CMS experiments give their end of year seminars, presenting some analyses of data taken this year at the highest collision energy, 13 TeV. Being a "beyond the Standard Model" theorist, I was most

Science & Technology Facilities Council

750 GeV Di-Photon Resonance at 13 TeV

 $\overline{\text{CMS}}$ (2.6 fb⁻¹)

ATLAS (3.2 fb^{-1})

UCL 2016

ATLAS: favours width of 45 GeV over narrow width to the tune of 0.3σ . Local(global) significance of NWA is 3.9 (2.3) σ . CMS: slightly favours narrow width. Local (global) significance is 2.6 (1.2) σ .

Explanation for Di-Photon Excess

A 750 GeV resonant sneutrino with a coupling to quarks:

We shall need the staus heavier than 750/2 GeV. BCA, Dev, Renner, Sakurai, arXiv:1601.03007

Science & Technolog

Decays

$$\Gamma_{\gamma\gamma} \equiv \Gamma(\tilde{\nu}_{i} \to \gamma\gamma) = \frac{\alpha^{2}m_{\tilde{\nu}_{i}}^{3}}{256\pi^{3}} \frac{|\bar{A}_{i33}|^{2}}{m_{\tilde{\tau}_{1}}^{4}} |A_{0}(\tau_{\tilde{\tau}})|^{2}, \quad (5)$$

$$\Gamma_{\gamma Z} \equiv \Gamma(\tilde{\nu}_{i} \to \gamma Z) = \frac{\alpha^{2}m_{\tilde{\nu}_{i}}^{3}}{256\pi^{3}} \frac{|\bar{A}_{i33}|^{2}}{m_{\tilde{\tau}_{1}}^{4}} \left(1 - \frac{m_{Z}^{2}}{m_{\tilde{\nu}_{i}}^{2}}\right)^{3} \\
\times |\lambda_{Z\tilde{\tau}_{1}\tilde{\tau}_{1}}A_{0Z}(\tau_{\tilde{\tau}}^{-1}, \tau_{Z}^{-1})|^{2}, \quad (6)$$

$$\Gamma_{ZZ} \equiv \Gamma(\tilde{\nu}_{i} \to ZZ) = \frac{\alpha^{2}m_{\tilde{\nu}_{i}}^{3}}{256\pi^{3}} \frac{|\bar{A}_{i33}|^{2}}{m_{\tilde{\tau}_{1}}^{4}} \left(1 - \frac{4m_{Z}^{2}}{m_{\tilde{\nu}_{i}}^{2}}\right)^{3} \\
\times |\lambda_{Z\tilde{\tau}_{1}\tilde{\tau}_{1}}A_{0Z}(\tau_{\tilde{\tau}}^{-1}, \tau_{Z}^{-1})|^{2}, \quad (7)$$

B.C. Allanach – p. 31

Science & Technology Facilities Council

persymmeny, ambridge 55

UCL 2016

Parameter Space

Science & Technology

ambridge **5**

orking group

UCL 2016

B.C. Allanach – p. 32

- Heavy vector triplets explanation of ATLAS Run I di-boson excess is *ruled out* by Run II searches involving leptons
- RPV explanation of di-boson excess is *alive* still because it only predicts hadronic channels
- RPV explanation of di-photon excess works fine and requires: a 750 GeV sneutrino and staus around 375-385 GeV.
- Can the RPV explanations be joined up into one explanation?
- We look forward to the Summer!

Science & Technolog

Supersymmetric Copies

Science & Technology Facilities Council

Supersymmetric Copies

Science & Technology Facilities Council

Review of R-Parity

The superpotential of the MSSM can be separated into two parts:

$$W_{R_p} = h_{ij}^e L_i H_1 \bar{E}_j + h_{ij}^d Q_i H_1 \bar{D}_j$$

+ $h_{ij}^u Q_i H_2 \bar{U}_j + \mu H_1 H_2,$
$$W_{R_P} = \frac{1}{2} \lambda_{ijk} L_i L_j \bar{E}_k + \lambda'_{ijk} L_i Q_j \bar{D}_k$$

+ $\frac{1}{2} \lambda''_{ijk} \bar{U}_i \bar{D}_j \bar{D}_k + \kappa_i L_i H_2.$

 W_{R_p} is what is usually meant by the MSSM. Q: Why ban $W_{\mathcal{R}_P}$? \mathcal{A} : "Proton decay"

Science & Technology

Definition of R-Parity

 \mathcal{Q} : How is $W_{\mathcal{R}_P}$ normally banned? \mathcal{A} : By defining discrete symmetry R_p

 $R_p = (-1)^{3B+L+2S}.$

 \rightarrow SM fields have $R_p = +1$ and superpartners have $R_p = -1$. There are two important consequences:

- Because initial states in colliders are R_p EVEN, we can only pair produce SUSY particles
- The lightest superpartner is stable

Proton decay

 \mathbb{R}_p terms are lepton number L, or baryon number B violating.

Science & Technology Facilities Council

 $(p \to \nu K^+) > 7 \cdot 10^{32} \, yr \Rightarrow \lambda'_{11k} \cdot \lambda''_{11k} \stackrel{<}{\sim} 10^{-27} \left(\frac{\tilde{m}_{d_k}}{100 \, \text{GeV}}\right)^2.$

Motivation for R_p

- It has additional search possibilities.
- Neutrino masses and mixings testable at LHC

Parameter Space: S2

Parameter Space: S3

Science & Technology

CMS Excesses

The anomalies were all in 20 fb⁻¹ of data taken at 8 TeV.

- One anomaly was in a W_R search arXiv:1407.3683
- Two anomalies in a search for di-leptoquark production CMS PAS EXO-12-041

NB We often deal with *invariant masses*, eg

 $M_{lljj}^{2} = (p(l_{1}) + p(l_{2}) + p(j_{1}) + p(j_{2}))^{\mu}$ $(p(l_{1}) + p(l_{2}) + p(j_{1}) + p(j_{2}))_{\mu}$

CMS W_R Search: 2.8 σ

gersymmeny ambridge **55** Örking gro^{nft}

Science & Technology

UCL 2016

W_R : Inferred Limits

ambridge 😽 Orking group

Science & Technology

A W_R model with reduced couplings could explain it Deppisch et al, arXiv: 1407.5384; Heikinheimo et al, arXiv:1407.6908; Dobrescu *et al* arXiv:1408.1082; Accuilar-Saavedra et al, arXiv:1408.2456.

V_R Search Important Features

- No excess in $\mu\mu jj$
- The excess is at invariant masses of 2 TeV: this is consistent with a particle of mass 2 TeV decaying into eejj. There were 14 measured events on a background of 4.0 ± 1.0 .
- Of these 14, 1 was a *same-sign* pair and 13 were *opposite sign*. Standard Model backgrounds:

CMS Di-Leptoquark Search

Assume that $LQ \rightarrow ej$ or νj .

Figure 1: Dominant leading order diagrams for the pair production of scalar leptoquarks.

The signals they go for then are:

• $eejj 2.4\sigma: S_T > 850 \text{ GeV}, M_{ee} > 155 \text{ GeV}, m_{ej}^{min} > 360 \text{ GeV}$

• $e\nu jj$ **2.6** σ : $S_T > 1040$ GeV, $M_{ej} > 555$ GeV, $E_T > 145$ GeV, $M_T(e\nu) > 270$ GeV

Proposal: $W = \lambda'_{111} LQd^c$

2 TeV left-handed selecton which decays via the λ'_{111} :

W_R Mass Distribution

persymmety, ambridge

Neutrinoless Double Beta Decay

Is *banned* in the Standard Model because it breaks lepton number: $Z \rightarrow (Z+2)e^-e^-$ Present bound from GERDA is $T_{1/2}^{0\nu} > 2.1 \times 10^{25}$ yr. It should increase by a factor 10 in the next year or so.

Science & Technology

Other Constraints

CMS arXiv:1302.4794 u^{e_L} d

Science & Technology

UCL 2016

Neutralino mass matrix

In the basis $[-i\tilde{B}, -i\tilde{W}^3, \tilde{H}_1, \tilde{H}_2]^T$

Mass eigenstates are labelled χ_1^0 , χ_2^0 , χ_3^0 , χ_4^0 in increasing mass order. Decays into/from neutralinos are affected by their *composition*. $\tan \beta = s_\beta/c_\beta$ is the ratio of the two Higgs VEVs.

Three Neutralino Scenarios

- S1: $M_2 = M_1 + 200 < \mu$. \tilde{B} LSP. \tilde{e} can decay to χ_2^0 or χ_1^{\pm} . Predicts R = OS/SS = 1.
- S2: $M_1 < \mu < M_2$. \tilde{B} LSP, but increased BR for $\tilde{l} \rightarrow \chi_1^0 l$. Predicts R = 1.
- S3: $M_2 \ll M_1$. \tilde{W} LSP. $\tilde{l}_L \to \chi_1^{\pm}$ but χ_1^{\pm} decays via λ'_{111} too. Predicts R = 3.

UCL 2016

Branching Ratios

Parameter Space: S1

The red triangle here will be covered by GERDA Phase-II

Event Numbers

Channel	$s+\overline{b}$	$ar{b}\pm\sigma_b$	Data
$eejj(M_{LQ} = 650 \text{ GeV})$	41.5	20.5 ± 3.3	36
$e\nu jj(M_{LQ} = 650 \text{ GeV})$	33.9	7.5 ± 1.6	18
$eejj(M_{LQ} = 700 \text{ GeV})$	32.7	$12.7{\pm}2.7$	17
$W_R(1.6 < M_{eejj}/\text{TeV} < 1.8)$	12.4	$9.6 {\pm} 3.8$	10
$W_R(1.8 < M_{eejj}/\text{TeV} < 2.2)$	26.0	$4.0{\pm}1.0$	14
$W_R(M_{eejj}/\text{TeV} > 2.2)$	2.6	$2.2{\pm}1.8$	4

Signal model point: S2 with $\lambda'_{111} = 0.175$, $m_{\tilde{l}} = 2TeV$ and $M_{\chi_1^0} = 900$ GeV.

ATLAS On-*Z* **Analysis**

 observed
 29

 background
 10.6 ± 3.2

 number of sigma
 3.0

 s (95% CL)
 7.1-31.8

 $\not\!\!E_T > 225 \text{ GeV}, H_T > 600 \text{ GeV},$ $81 < m_{ll}/\text{GeV} < 101, \text{OSSF leptons}, p_T(j_{1,2}) > 35$ GeV. CMS sees no excess, but has different cuts: OSSF, $81 < m_{ll}/\text{GeV} < 101, p_T(j_{1,2}) > 40 \text{ GeV},$ $\not\!\!E_T/\text{GeV} = [100 - 200, 200 - 300, > 300].$ Have to check on a model-by-model basis whether they are compatible

ambridge

Combined Constraints

(Barenboim *et al* also had this interpretation in arXiv:1503.04184). Less^a than 6(7) events for $\tan \beta = 1.5(30)$.

ucl 2018 BCA, Kvellestad, Raklev, arXiv: 1504.02752

Search in m_{ll} : for Opposite Sign Ssame Flavour leptons (either *e* or μ). Demand $\not{E}_T > 100$ GeV. The dominant $t\bar{t}$ background produces $e^{\pm}\mu^{\mp}$ at the same rate as OSSF (e^+e^- or $\mu^+\mu^-$) and so it is used to measure the background. Background estimate: 730±40 events, but there were 860 measured: an excess of 130^{+48}_{-49} .

Figure 1: Feynman diagram for the golden cascade decay: opposite sign same flavour leptons (OSSF)

BCA, Raklev, Kvellestad, arXiv:1409.3532; Huang Wagner PRD 90 015014 arXiv:1410.4998; Grothaus, Sakurai arXiv:1502.05712

A Sharp Invariant Feature

m_{ll} **Distribution**

Edge Interpretation

The signal rate determines $m_{\tilde{q}}$, $m_{ll}^{max} = 78.4 \pm 1.4$ GeV we fit to $\sqrt{(m_{\chi_2^0}^2 - m_{\tilde{l}}^2)(m_{\tilde{l}}^2 - m_{\chi_1^0}^2)}$ $m_{\tilde{i}}^2$ We choose $m_{\tilde{l}}, M_2$ then vary M_1 in order to predict the correct m_{ll}^{max} . Sometimes, $M_1 > M_2$.

Example Spectrum

FIG. 4. Example signal point that fits the central CMS rate and edge inferences: $M_2 = 300 \text{ GeV}, m_{\tilde{l}_R} = 200 \text{ GeV}, m_{\tilde{q}} = 1050 \text{ GeV}$. Prominent decays with branching ratios higher than 10% are shown as arrows.

Science & Technology

ambridge

Orking groun

LHC Constraints

We shall see squark masses of around a TeV being predicted.

Science & Technology Facilities Council

persymmety ambridge

Other Constraints

We shall see squark masses of around a TeV being predicted. ATLAS(2014), arXiv:1405.7875; CMS JHEP 1406 (2014) 055, arXiv:1402.4770.

Science & Technology

UCL 2016

Viable Parameter Space

Parameter space fitting the central rate edge measurement. Constraints from ATLAS and 4-lepton \mathbb{P}_T searches currently underway

Science &

$(-2)_{\mu}$ and Dark Matter

CMS 4-lepton E_T (*preliminary*)

ATLAS Disagrees arXiv:1503.03290

Science & Technology

persymmeny ambridge

B.C. Allanach – p. 68

q

a

Z

Kinematical Distributions: LQ

Cascade Decay

 $p_{l^{\pm}}^{\mu} = (|\underline{p}_{l^{\pm}}|, \underline{p}_{l^{\pm}})$ $\chi_{1}^{0} \quad p_{\chi_{1,2}^{0}}^{\mu} = (\sqrt{m_{\chi_{1,2}^{0}}^{2} + |\underline{p}_{\chi_{1,2}^{0}}|^{2}}, \underline{p}_{\chi_{1,2}^{0}})$ \widetilde{l} χ^0_2 Work in *l* rest frame. The invariant mass of the l^+l^- pair is $m_{ll}^2 = (p_{l^+} + p_{l^-})^{\mu} (p_{l^+} + p_{l^-})_{\mu} = p_{l^+}^2 + p_{l^-}^2 + 2p_{l^+} \cdot p_{l^-}$ $= 2|p_{I^+}||p_{I^-}|(1 - \cos\theta) \le 4|p_{I^+}||p_{I^-}|.$ Momentum conservation: $\Rightarrow \underline{p}_{\chi_2^0} + \underline{p}_{l^+} = \underline{0}, \qquad \underline{p}_{l^-} + \underline{p}_{\chi_1^0} = \underline{0}.$ Energy conservation: $\sqrt{m_{\chi_2^0}^2 + |\underline{p}_{\chi_2^0}|^2} = m_{\tilde{l}} + |\underline{p}_{l^+}|,$ $\Rightarrow |\underline{p}_{l^+}| = \frac{m_{\chi_2^0}^2 - m_{\tilde{l}}^2}{2m_{\tilde{l}}}$. Similarly $|\underline{p}_{l^-}| = \frac{m_{\tilde{l}}^2 - m_{\chi_1^0}^2}{2m_{\tilde{l}}}$.

 $p_{\tilde{l}}^{\mu} = (m_{\tilde{l}}, \underline{0})$

Statistics

 $\bar{b} \pm \sigma_b$ background events:

$$p(b|\bar{b}, \sigma_b) = \begin{cases} Be^{-(b-\bar{b})^2/(2\sigma_b^2)} & \forall b > 0\\ 0 & \forall b \le 0 \end{cases}$$

Marginalise over *b* to take confidence limits:

$$P(n|n_{exp}, \ \overline{b}, \sigma_b) = \int_0^\infty db \ p(b|\overline{b}, \ \sigma_b) \frac{e^{-n_{exp}n_{exp}^n}}{n!}.$$

The CL is then $P(n < n_{obs} | n_{exp}, \bar{b}, \sigma_b)$.

Simulations

- SUSY spectrum SOFTSUSY3.5.1 modified to iterate and hit the edge measurement
- Sparticle decays SUSYHIT1.4
- LHC signal events PYTHIA8.186
- Backgrounds CMS
- Dark matter and anomalous magnetic moment of the muon micrOMEGAs3.6.9.2
- All linked together with the SLHA.

A New Leptoquark Model

Does not lead^{*a*} to proton decay, and has:

- A scalar $\tilde{R}_2 = (3, 2, 1/6)_+$
- A scalar $S = (1, 3, 0)_{-}$
- A dark matter fermion $\chi = (1, 1, 0)_{-}$.

$$\mathcal{L} = -\lambda_d^{ij} \bar{d}_R^i \tilde{R}_2^T \epsilon L_L^j + hc - \frac{h_i}{\Lambda} S \bar{Q}_i \chi \tilde{R}_2 - \frac{h_i'}{\Lambda_2} S \bar{l}_i \chi \tilde{H} +$$

^aQueiroz, Sinha, Strumia, arXiv:1409.6301; BCA, Alves, Queiroz, Sinha, Strumia, arXiv:1501.03494

UCL 2016

Production at the LHC

Upperdiagramcanexplain W_R anddi-leptoquarkexcesses.

Lower diagram can explain CMS SUSY search excess (but not ATLAS).

Science & Technology

B.C. Allanach – p. 74

Constraints on the masses

Dark Phenomenology

DM stability is guaranteed by a discrete Z_2 . χ has a significant pseudoscalar coupling to the Higgs, resulting in a dominant spin-*dependent* scattering cross-section.

$$\mathcal{L} = \bar{\chi}(i/\partial - M_{\chi})\chi + \frac{1}{\Lambda}\left(vh + \frac{1}{2}h^{2}\right)$$
$$[\bar{\chi}\chi\cos\xi + \bar{\chi}i\gamma_{5}\chi\sin\xi] +$$

Direct searches (eg LUX) imply that $m_{\chi} > 100 \text{ GeV}$ is allowed for $\sin^2 \xi > 0.7$ and $\Lambda = 1 - 5$ TeV. We pick $m_{\chi} \sim 140$ GeV.

B Meson Rare Decays

- FCNC decays loop suppressed and rare in the Standard Model
- New heavy particles in could appear in competing diagrams can affect the branching ratio and angular distributions

R_K : 2.6 σ

$R_K \equiv \frac{BR(B^+ \to K^+ \mu^+ \mu^-)}{BR(B \to K^+ e^+ e^-)} R_K = 0.745^{+0.090}_{-0.074} \pm 0.036$

$R_K(SM) = 1.00$

UCL 2016

Indicates lepton flavour non-universality B.

B.C. Allanach – p. 78

 $\rightarrow K^{*0} (\rightarrow K^+ \pi^-) \mu^+ \mu^-$

 $P'_5 = S_5/\sqrt{F_L(1-F_L)},$ leading FF uncertainties cancel. Tension already in 1 fb⁻¹ and confirmed in 3 fb⁻¹ last week LHCb-CONF-2.015-0^{B.C.Allanach-p.79}

Science & Technolo Facilities Council

ambridge 😽

Orking groun

New Physics: Effective Operators Altmannshofer, Straub arXiv:1411.3161

 $\mathcal{L} = C_9(\bar{s}_L \gamma^{\mu} b_L)(\bar{l} \gamma_{\mu} l) + C_{10}(\bar{s}_L \gamma^{\mu} b_L)(\bar{l} \gamma_{\mu} \gamma_5 l) + \dots$ Fitting many operators to 76 *B*-physics observables, a non-zero fit to C_9^{μ} is preferred at the 4.3 σ level.

► Hadronic effects like charm loop are photon-mediated ⇒ vector-like coupling to leptons just like C₉

- How to disentangle NP \leftrightarrow QCD?
 - Hadronic effect can have different q^2 dependence
 - Hadronic effect is lepton flavour universal ($\rightarrow R_{\mathcal{K}}!$)

CMS $h \rightarrow \tau \mu$: 2.6 σ

There is no lepton flavour violation in the Standard Model, so you should see none of these decays^{*a*}. Various models use flavour symmetries, but also 2 Higgs doublet models (2HDM) work.

Science & Technology

UCL 2016 CMS-PAS-HIG-14-005

B Meson Rare Decays

- FCNC decays loop suppressed and rare in the Standard Model
- New heavy particles in could appear in competing diagrams can affect the branching ratio and angular distributions

R_K : 2.6 σ

$R_K \equiv \frac{BR(B^+ \to K^+ \mu^+ \mu^-)}{BR(B \to K^+ e^+ e^-)} R_K = 0.745^{+0.090}_{-0.074} \pm 0.036$

$R_K(SM) = 1.00$

UCL 2016

Indicates lepton flavour non-universality B.

B.C. Allanach – p. 83

 $\rightarrow K^{*0} (\rightarrow K^+ \pi^-) \mu^+ \mu^-$

 $P'_5 = S_5/\sqrt{F_L(1-F_L)},$ leading FF uncertainties cancel. Tension already in 1 fb⁻¹ and confirmed in 3 fb⁻¹ last week LHCb-CONF-2015-0^{B.C.Allanach-p.84}

Science & Technolo Facilities Council

ambridge 😽

Orking groun

New Physics: Effective Operators Altmannshofer, Straub arXiv:1411.3161

 $\mathcal{L} = C_9(\bar{s}_L \gamma^{\mu} b_L)(\bar{l} \gamma_{\mu} l) + C_{10}(\bar{s}_L \gamma^{\mu} b_L)(\bar{l} \gamma_{\mu} \gamma_5 l) + \dots$ Fitting many operators to 76 *B*-physics observables, a non-zero fit to C_9^{μ} is preferred at the 4.3 σ level.

► Hadronic effects like charm loop are photon-mediated ⇒ vector-like coupling to leptons just like C₉

- How to disentangle NP \leftrightarrow QCD?
 - Hadronic effect can have different q^2 dependence
 - Hadronic effect is lepton flavour universal ($\rightarrow R_{\mathcal{K}}!$)

CMS $h \rightarrow \tau \mu$: 2.6 σ

There is no lepton flavour violation in the Standard Model, so you should see none of these decays^{*a*}. Various models use flavour symmetries, but also 2 Higgs doublet models (2HDM) work.

