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Introduction

• LHC has been collecting data since 
2010, now nearing end of Run 2 

• ATLAS experiment is a multi-
purpose detector for measurements 
and searches with all known 
particles 

• Today: talking about searches 
especially for dark matter, with 
strongly charged particles (quarks 
and gluons) in the final state

2



The ATLAS Experiment
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Measuring strongly charged 
particles mostly uses the calorimeters… but incorporate some  

tracking info…

and some muon info too!



Jets and how we use them

• What does a quark or gluon actually look like in a detector? 

• Because strongly charged particles can’t exist alone, energy of a 
relativistic q or g converted to more particles: final state is a 
collimated shower of particles in the tracker & calorimeter
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• No exact 1 to 1 correspondence between parton and jet (is a parton 
even real?), but we can use jets as a tool to tell us about strong 
processes in our initial collision



Residual in-situ 
calibration

EM or LCW 
constituent scale jets

Residual pile-up 
correction

Absolute EtaJES

Origin Correction

Global sequential 
calibration

Jet area based pile-
up correction

Function of µ and NPV 
applied to the jet at  

constituent scale

Function of event pile-up 
energy density and jet area

Jet finding applied to 
topological clusters at 

EM or LCW scale

Changes the jet direction 
to point to the primary 

vertex.  Does not affect E.

Corrects the jet 4-vector 
to the particle level scale. 

Both the energy and 
direction are calibrated.

Based on tracking and 
muon activity behind jets. 

Reduces flavour dependence 
and energy leakage effects.

A final residual calibration 
is derived using in-situ 
measurements and is 
applied only to data

Calibrating jets
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Why do we calibrate? 

• Want to bring jets in data to same scale as “true” jets in simulations 

• Account for dead regions of calorimeter, energy lost in “absorber” material, 
differences between EM and hadronic showers, …

We will see this again later!



Motivating BSM physics [at the LHC]
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The Standard Model has done remarkably well at withstanding experimental tests 

• Higgs discovery of 2012 marked last piece of the SM  

• No meaningful deviations from SM predictions observed so far 

But still a lot of questions suggesting that BSM physics should be just around the corner!

Dark matter 

Hierarchy problem 

Gauge unification 

Higgs fine-tuning 

….

What is it? Is it a particle? 

Why is gravity so weak? Can extra dimensions explain it? 

Is there a unified theory connecting fundamental forces? 

How do we account for large, fine-tuned Higgs mass corrections? 

Why 3 generations? Why 4 forces? Matter-antimatter asymmetry?



Dark matter
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Cosmological evidence 
is the only positive 
confirmation of DM 
we currently have!

Current leading model 
is still WIMPs: 
 - Long lifetime 
 - No EM charge 
 - Correct relic density 
Weak interactions possible



How do we look for dark matter?
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DM DM

q q

Indirect  
detection

IceCube, 
Super-K, …

Direct detection: LUX, XENON, …

Colliders

ATLAS 
& CMS



Simplified dark matter models at ATLAS
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What is that? Range of answers!

Common 
in Run 1

Current 
standard

Moving this way

via DMF



Classic dark matter 
searches: mono-X
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New physics! • Search for simplified-model 
DM mediator to MET plus 
any object on which to 
trigger 

• Most sensitive is MET+jet 
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MET+W/Z/h, …
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What about other mediator decay products?

• Left: Classic MET+jet signature 

• But: if you can make it from quarks, you can make quarks from it! 

• Allow Z’ mediator to decay back to two quarks and have a dijet final 
state signature with no missing energy 

• No need for an ISR object, so higher cross section process
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The high mass dijet analysis: a versatile search!
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SM

New physics!

mjj

• Invariant mass of leading two 
jets in event is mjj. If only SM, 
mjj is a smooth exponential 
distribution  

• Look for bumps on top! New 
particle of mass M decaying to 
quarks or gluons -> bonus 
events at M 

• Use degree of bumpiness to set 
limits on wide range of models 
— black holes, W’ and Z’ 
mediators, excited quarks, 
scalar octets, etc. etc
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Dijet results

• With fit above, study events from 1.1 TeV to 8 TeV!
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• Set limits on Z’ mediator in 
2D plane: coupling to SM 
quarks vs Z’ mass



But what if we aren’t looking for high masses?

• “Exclusion” is a very 
model dependent 
statement 

• Low mass 
resonances with 
small cross 
sections or BRs not 
actually strongly 
constrained 

• At the start of Run 
II, leading limits 
were still from the 
Tevatron!
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(this comes 
with luminosity)

Status at the beginning of Run II

When we focus on pushing limits to higher masses, 
we treat this region as “excluded” - it’s not! 



The ATLAS trigger system
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ATLAS Detector

L1 Trigger

High level trigger

Data leaves detector at 40 MHz: 
way more than we can 

process and store!

Hardware L1 trigger reduces 
flow to 100 kHz

A perfect drop of physics!

Software HLT passes 
~1 kHz: 40,000 x less



Trigger prescales
• Sometimes there are just 

too many interesting events! 

• Things with jets are an 
example.  

• At low pT, way more 
interesting events than 
we can store! Throw 
some away. 

• Easiest thing for analyses: 
search in events above 
unprescaled trigger turn-
on. 
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Combining triggers can get you something …

• … but it isn’t 
great! 

• In 8 TeV we 
combined 
triggers to 
access mjj ~250 
GeV 

• But effective 
luminosity 
dropped so fast 
that CDF limits 
were still stronger
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Fancy Option 1: trigger level analysis!

• Using jets made with only trigger information, we save a lot of space! 

• No tracks, no other objects, not even other calorimeter info outside the 
jets themselves.
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L1

Enormous 
amount of 

data read in 
at L1 trigger 

level

Can either store large 
amount of data for a 

small number of 
events….

… or small amount of 
data for many, many 

events
Fixed amount of 

bandwidth



How much does this approach  
actually help with data storage?
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• Trigger level 
analysis has the 
highest stream 
rate of any HLT 
physics stream…

• … but makes up only a tiny 
fraction of the total HLT 
bandwidth! 

• Due to very small event size



The luminosity gain in practice
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Event selection: kinematics

• 2 jets with |η| < 2.8 

• pT1 > 220 GeV, pT2 > 85 GeV 

• y* = (y1-y2)/2 < 0.6 to 
optimise sensitivity 

• Second signal region uses y* < 
0.3 to reach lower masses 

• mjj > 520 GeV (470 GeV) to 
remove trigger bias 

• 3 leading jets pass cleaning 
(next slide)
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QCD produces jets along  
the beamline…

… while most 
signals are fairly 

isotropic.



The biggest complication: customised jet 
calibration!
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Uncalibrated jetsOffline Trigger-level 
jets

Area pileup subtraction
Origin correction

Residual correction
MC JES

GSC

Data-driven 
cross calibration

In situ corrections

Eta intercalibration
Custom GSC
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How well does it work?

Plot mjj for 
online and 
offline jets in 
each event 
with a 
prescaled 
low-pT 
trigger. 

Response 
found to be 
within 1% 
with no mjj 
dependence!
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New challenges in 2016!

• With 2015+2016 
dataset and 
updated jet 
recommendations, 
discovered that 
extremely high 
statistical 
precision means 
sensitivity to small 
non-
smoothnesses in 
calibration
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• Developed new in situ 
combination and an uncertainty on 
the bump hunting process



Uncertainties on jet energy scale
• Uncertainty ~2x 

offline value, largely 
due to jet flavour 
(harder to 
distinguish without 
tracking information)  

• New result in 
progress improves 
this with custom 
GSC including 
number of jet 
constituents in 
place of number of 
tracks
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Searching for bumps on a smooth background

• Background estimate 
created by 
parameterising data 
distribution with a 
smooth fit 

• Restricted range 
defined by fit shape  

• Improvement to current 
analysis using a sliding 
window fit, allowing a fit 
to higher masses
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No evidence of new physics!



Model-dependent TLA limits
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Model-independent TLA limits
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News from the upcoming TLA result
• New results with ~10x the luminosity will be public next week for 

Moriond! Watch this space 

• Sliding fit for background estimate allows us to look at higher mjj values 

• Will be the first result with new smooth in situ calibration
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https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults


Fancy Option 2: dijet + ISR analysis!
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Search from 200 GeV 
using lowest 

unprescaled single 
photon trigger

…and from 300 GeV 
using lowest unprescaled 

single jet trigger

• Look for dijet + initial 
state radiation (jet or 
γ) events and trigger 
on the ISR object 

• Lower luminosity 
than TLA, and takes 
σ hit from ISR 
requirement 

• But, gives access to 
even lower masses 
than TLA!



Event selection
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• Photon ISR channel 

• Trigger: HLT_g140_loose 

• >= 2 selected jets, >= 1 (isolated) γ with 
pT > 150 GeV 

• y* < 0.8 

• Jet ISR channel 

• Trigger: HLT_j380 

• >= 3 selected jets, lead jet pT > 430 GeV  

• y* < 0.6

A photon 
of 150 GeV

can be 
pT balanced 
by two much  

softer jets



Search phase results

• No new physics, again … 

• Photon channel offers greatest range but jet channel has higher statistics
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Limits from dijet+ISR
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All the way down 
to 200 GeV! Not quite enough 

to connect with high-mass 
dijet: doing better this year!

Short range but 
strong limit!

And of course, 
Gaussian limits 
available too!



Dijet+ISR goodies to look forward to

• First paper is planned for 2015+2016+2017 data! Timeline this summer. 

• Introducing 2-b-tagged channel!  

• Like di-b analysis, gain sensitivity for a democratic Z’ just from 
background suppression 

• Better trijet channel fits! 

• Sliding window allows adaptation to background shape such that fit 
can be extended to higher mjj — ideally all the way to 1200 GeV 

• Fancier triggers for photon ISR channel, allowing better sensitivities 
above 300 GeV
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• For even lower Z’ mass, decay products are very close together → 
reconstruct as a large jet instead of two small jets. Use a tagger to 
distinguish signal from background based on substructure 

• Lots of challenges in the background estimate! Extrapolate from data CR 
which does not pass tagging requirements. 1 estimate per signal point. 

• Can extend limits as low as 100 GeV! (Then we run into W & Z…)

Going even 
lower: 
boosted 
dijet+ISR
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Outstanding challenges for the full Run II analyses

• Background estimates 

• Sliding window fit is not a complete solution! The narrower the window 
the more susceptible to spurious signals. Causing serious issues in 
current TLA 

• Several new proposals are under investigation 

• Smoothness — from calibrations, b-tagging, etc 

• Several analyses discovered non-smoothness introduced by 
calibrations, tagging, etc 

• Developing uncertainty handling for smoothness issues - will be more 
robust next time
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Putting it all together ….
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What does this tell 
us about DM?
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• Depends a lot on the 
assumptions we 
make! 

• Take an axial-vector 
mediator à la arXiv:
1703.05703 

• Top: gL = 0.1, 
bottom: gL = 0.0 

• Strong constraints 
from dijet family!



Comparing collider limits to the rest of the field
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Comparing collider limits to the rest of the field
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• Axial vector mediators, spin dependent limits 

• Left: DM-proton cross section. Right: DM-neutron 
cross section.



What else can we say with low-mass dijet limits?
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A “real” version of this plot 
will be public in 5 days!
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The roadmap forward

• How can we improve resonance searches? Going to get both a lot 
harder and less immediately rewarding in Run III 

• In the pipeline: Combine both ideas today into trigger level 
dijet+ISR 

• FTK allowing pileup discrimination in trigger jets will make lower pT 
jetty analyses possible 

• Intensify searches for more unusual models/signatures 

• Less over-simplified DM models? Long lived particles? 

• Make interesting new (unintended) use of the detector to target 
uncovered possibilities
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The BSM landscape at 13 TeV

Looked under most of the obvious 
rocks … 

      … time to start getting more exotic?
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Thanks! Any questions?
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Event selection: everything beyond kinematics

• Key part of ATLAS analysis is cleaning and quality checks: 
don’t want any corrupted data or fake jets 

• In TLA, we are missing a lot of relevant quantities! 

• Ignore cuts which remove less than 0.01% of data, as 
long as they have no shape bias 

• Some event criteria can be removed later by timestamp 

• 5/6 jet cleaning criteria still available: ignore the last, 
subject to careful validation
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