

Track-triggering at CMS for the High-Luminosity LHC

Louise Skinnari (Cornell University)

UCL HEP Seminar, April 7, 2017

Luminosity

CMS Peak Luminosity Per Day, pp

Motivation

• Higgs boson

- Precision measurements of properties & couplings
- Rare decays
- Di-Higgs searches to measure Higgs self-coupling

Motivation

- Detailed studies of possible discovered new particles at the LHC
- Extend discovery reach in searches for SUSY & other BSM scenarios
- Search for rare SM processes, possibly enhanced by BSM physics

The price for high luminosity

Simulated event display with average pileup of 140

PILEUP: number of overlapping interactions (expected average ~200)

Particularly challenging for trigger system!

The price for high luminosity

Simulated event display with average pileup of 140

PILEUP: number of overlapping interactions (expected average ~200)

Particularly challenging for trigger system!

CMS trigger system

Which collision events to read out & store for offline analysis?

- L1 trigger
 - Hardware-based, implemented in custom-built electronics
 - Muon & calorimeter information with reduced granularity

High-Level Trigger (HLT)

- Software-based, executed on large computing farms
- Tracking & full detector granularity

Why tracking @ L1?

- With HL-LHC, event rates would exceed what can be read out at L1
- *Physics goals* rely on excellent detector performance & trigger capabilities
 - Must allow triggering on objects at electroweak scale!

• Typical handle to control event rates at trigger level -- momentum thresholds

Increasing thresholds limits physics potential + alone insufficient!

Using tracking @ L1

Example 1: Muons -- combine track with L1 muon object

Sharpened p_{T} threshold \rightarrow significant rate reductions

Using tracking @ L1

Example 2: Jets -- use nearby tracks to identify vertex position

10⁶

10⁵

10⁴

 10^{3}

10²

ate (kHz)

... how?

CMS tracker for HL-LHC

- New all silicon outer tracker + inner pixel detector
 - Increased granularity for HL-LHC occupancies
 - Tracking in hardware trigger

Reconstruct trajectories of charged particles with $p_T > 2$ (3) GeV

CMS tracker for HL-LHC

- New all silicon outer tracker + inner pixel detector
 - Increased granularity for HL-LHC occupancies
 - Tracking in hardware trigger

Reconstruct trajectories of charged particles with $p_T > 2$ (3) GeV

results shown today based on earlier version of geometry with flat barrel

p_T modules

 Modules provide p_T discrimination in FE electronics through hit correlations between closely spaced sensors

PS modules (pixel-strip)

- Top sensor: 2x2.5 cm strips, 100 µm pitch
- Bottom sensor: 1.5 mm x 100 µm pixels

2S modules (strip-strip)

- Strip sensors 10x10 cm²
- 2x5 cm long strips, 90 µm pitch

- Stubs: Correlated pairs of clusters, consistent with ≥ 2 GeV track
 - Data reduction at trigger readout
 - Stubs form input to track finding

HL-LHC conditions

- 40 million bunch crossings / second, each on average 200 interactions
- ~33 charged particles from minbias events @ 14 TeV
 - ► 6600 charged particles / bunch crossing!
 - ~180 tracks with $p_T > 2$ GeV per event

Challenges

- **Combinatorics** \Rightarrow 15-20K input stubs / BX
- **Data volumes** \Rightarrow up to ~50 Tbits/s
- L1 trigger decision within 12.5 μ s (*) \Rightarrow time available for track finding $\sim 4 \mu$ s

- A track-trigger operating at 40 MHz with <10 µs latency has never been built!
 - **CDF:** L2 with lower input rate & less dense environment
 - **ATLAS FTK:** After L1 with lower input rate & longer latency

Track trigger strategy

- Parallelization
- Divide tracker in segments in ϕ / z
- Time-multiplexed systems -- process several BX simultaneously
- Different approaches to attack combinatorics & occupancies

CMS track triggering

R&D efforts ongoing -different approaches for handling occupancies & combinatorics

Tracklet method

Tracklet approach

- Minimal hardware system based on commercial FPGAs
 - Off-the-shelf hardware
 - ► Ever-increasing capability + programming flexibility → ideal for fast track finding

- Tracklet algorithm
 - Road search algorithm
 - Few (simple) calculations
 - Parallelized processing in time & space
 - Naturally pipelined implementation
 - Operates at a fixed latency -- truncate if necessary

Tracklet algorithm: Seeding

- Seed by forming tracklets
 - Pairs of stubs in adjacent layers/disks
 - Initial tracklet parameters from stubs + beamspot constraint
 - Consistent with $p_T > 2 \text{ GeV}$

Tracklet algorithm: Seedin

- Seed by forming tracklets
 - Pairs of stubs in adjacent layers/disks
 - Initial tracklet parameters from stubs + beamspot constraint
 - Consistent with $p_T > 2 \text{ GeV}$

Seed multiple times in *parallel* to ensure good coverage & redundancy

Tracklet algorithm: Project

- Project tracklets to other layers & disks to search for matching stubs
- Use predefined search windows
- Project both inside-out & outside-in

projections to different layers/disks done in parallel!

Tracklet algorithm: Fit

- Perform track fit of stubs matched to trajectory
- Linearized χ^2 fit
- Gives final track parameters
 - ▶ рт, η, ф₀, ∠₀
 - Optionally d₀

Tracklet algorithm: Duplicate Removal

- A given track can be found many times due to seeding in multiple pairs of layers
 - Ensures high efficiency
- Remove duplicates based on shared stubs
 - Compare pairs of tracks & count # independent / shared stubs

Tracking performance

- Efficiency as function of η for single particles (e/μ/π)
- High efficiencies achieved
- Minimal impact from truncation

Tracking performance

- $\sigma(z_0) \sim 1 \text{ mm}$ for wide range of η thanks to PS modules
- σ(p_T)/p_T ~ 1% at central η for high-p_T track

- Already good enough resolution for trigger
- Known degradation from using too few bits in certain points of calculations, can be corrected

... how to implement this?

Algorithm implementation

- Simulations of method
 - Floating-point simulation (C++)
 - Integer emulation of firmware (C++)
 - FPGA firmware simulation (Vivado)
- Hardware implementation
 - Currently implemented in firmware as two projects (half barrel vs hybrid+disks)

- System replicated for parallel data processing
- Divide detector in φ sectors
 - ▶ Tracks with p_T > 2 GeV span max. 2 sectors
 - Dedicated processing board for each sector
- System time multiplexed by factor 6
 - ▶ New event every 150 ns
- Tracklet formation within sector, projections to neighboring sectors sent there for stub matching

- System replicated for parallel data processing
- Divide detector in φ sectors
 - Tracks with $p_T > 2$ GeV span max. 2 sectors
 - Dedicated processing board for each sector
- System time multiplexed by factor 6

New event every 150 ns

 Tracklet formation within sector, projections to neighboring sectors sent there for stub matching

500

0

-500

-1000

 28ϕ sectors

- System replicated for parallel data processing
- Divide detector in φ sectors
 - Tracks with $p_T > 2$ GeV span max. 2 sectors
 - Dedicated processing board for each sector
- System time multiplexed by factor 4-8
 - New event every 100-200 ns
- Tracklet formation within sector, projections to neighboring sectors sent there for stub matching

- System replicated for parallel data processing
- Divide detector in ϕ sectors
 - Tracks with $p_T > 2$ GeV span max. 2 sectors
 - Dedicated processing board for each sector
- System time multiplexed by factor 6
 - New event every 150 ns
- Tracklet formation within sector, projections to neighboring sectors sent there for stub matching

Challenge of combinatorics

- Main challenge -- combinatorics in forming tracklets & matching projections
- Subdivide layers & sector into smaller units to allow parallel processing

STUB INPUT Stub

memories processing modules

memories processing modules **STUB INPUT** Stub Forming Projection tracklets transmission organization to neighbors

Demonstrator

- Demonstrate that full tracking chain meets required performance within available latency
 - For final system process each sector with a single (future) FPGA
 - 2016 demonstrator
 - *φ* sector for barrel vs hybrid+disk projects
- Process many simulated events in sequence

Demonstrator hardware

- Sector boards for demonstrator -- **µTCA boards**
 - Xilinix Virtex-7 FPGA + Zynq chip for outside communication
 - AMC13 card provides central clock distribution

Boards developed by University of Wisconsin

Test stand @ CERN

Demonstrator results

 \checkmark C++ emulation vs firmware implementation:

- single µ: 100% agreement

✓ 100% agreement between board output & Vivado firmware simulation

47

Latency measurement

- A full end-to-end latency measurement done using clock counter
 - 240 MHz clock (same as processing clock)
 - Implemented on input emulator board
- First track out latency: 800 clks = <u>3.33 μs</u>
- Well within budget (4µs)!

- Compare with latency model
 - Each processing step has fixed latency => $3.35 \ \mu s$
 - ▶ In good agreement with measured latency (3 clks / 0.38% difference)

Summary

Conclusions

- Incorporating tracking in L1 trigger critical to achieve required rate reductions for CMS at HL-LHC
- Highly challenging -- track triggering on this scale never implemented before
 - Aggressive R&D efforts ongoing
 - System demonstrators in 2016 show feasibility of the systems
- One of these efforts: tracklet approach
 - Road search algorithm using commercial FPGAs
 - Manage data volume & combinatorics -- segmentation & parallel processing
 - Feasibility demonstrated!
 - Implemented on Virtex-7 FPGAs with 3.33 µs latency
 - Ongoing work
 - Improvements to improve load balancing & reduce latency even further
 - Migrate to new tracker geometry