

Track-triggering at CMS for the High-Luminosity LHC

Louise Skinnari (Cornell University)

UCL HEP Seminar, April 7, 2017

Luminosity

CMS Peak Luminosity Per Day, pp

Data included from 2010-03-30 11:22 to 2016-10-27 14:12 UTC

5

Motivation 2.9190 The study of the Higgs boson will continue to be central to the program. It will include precisely \sim ivauvii ko

• **Higgs boson** ²¹⁹² for rare SM and BSM decays. The enormous dataset will give access to all the p-p production ²¹⁹¹ measurements of the Higgs boson couplings, probing of its tensor structure, and the search 20201

- I Precision measurements of properties & couplings $\frac{1}{2}$ 22 processes and decays of the Higgs boson. Figure 1.10 shows the current CMS results (left) and α ▶ Precision measurements of properties & couplings
	-
	-

Motivation

- Detailed studies of possible discovered new particles at the LHC
- Extend discovery reach in searches for SUSY & other BSM scenarios
- Search for rare SM processes, possibly enhanced by BSM physics

The price for high luminosity

Simulated event display with average pileup of 140

PILEUP: number of overlapping interactions (expected average ~200)

Particularly challenging for trigger system!

The price for high luminosity

Simulated event display with average pileup of 140

PILEUP: number of overlapping interactions (expected average ~200) <u>CMS LIN:</u>
CMS LIN: number of overlanning interactions (expected average ...? OO)

Particularly challenging for trigger system!

CMS trigger system *• Muon & calorimeter information with reduced granularity, no tracking information* **Journey to Human Street and Alexander Street and Alexander Street and Alexander Street and Alexander Street and**

Which collision events to read out & store for offline analysis?

- **• L1 trigger** • L1 trigger
- **Hardware-based, implemented in** custom-built electronics ● **Hardwa** re-based, implemented in
	- ‣ Muon & calorimeter information with reduced granularity reduced gran Lvl-1 pipelines Lvl-2 Front end pipelines **LIVIUULEX CAIULII**
		- **• High-Level Trigger (HLT) ~3 kHz**
- ‣ Software-based, executed on large computing farms where **CONSTRUCTED** Lvl-3 Processor farms on large
	- **Fiacking & full detector granularity 200 Hz**

Why tracking @ L1?

- With HL-LHC, event rates would exceed what can be read out at L1
- *Physics goals* rely on excellent detector performance & trigger capabilities
	- ‣ Must allow triggering on objects at electroweak scale!

• Typical handle to control event rates at trigger level -- momentum thresholds

Increasing thresholds limits physics potential + alone insufficient!

⇒ Tracking @ L1

Using tracking @ L1

Example 1: Muons -- combine track with L1 muon object

shown. Bottom: Rates of single muon triggers as a function of the *p*^T threshold. For triggers based on stand-alone L1 muons, the quality cut (*^Q* 4) that was used during Run-I is applied. **Sharpened pT threshold** → **significant rate reductions**

Using tracking @ L1 \mathbf{H} **USING** Lower Thresholds \mathbf{m} ang \mathbf{v} proved particles

Example 2: Jets -- use nearby tracks to identify vertex position Example 2: Jets --

 \sim

1

... how?

CMS tracker for HL-LHC

- New all silicon outer tracker + inner pixel detector
	- ‣ Increased granularity for HL-LHC occupancies
	- Tracking in hardware trigger

Reconstruct trajectories of charged particles with pT > 2 (3) GeV

CMS tracker for HL-LHC

- New all silicon outer tracker + inner pixel detector
	- ‣ Increased granularity for HL-LHC occupancies
	- Tracking in hardware trigger

Reconstruct trajectories of charged particles with pT > 2 (3) GeV

results shown today based on earlier version of geometry with flat barrel

pT modules

• Modules provide p_T discrimination in FE electronics through hit correlations between closely spaced sensors

PS modules (pixel-strip)

- Top sensor: 2x2.5 cm strips, 100 µm pitch
- Bottom sensor: 1.5 mm x 100 µm pixels

2S modules (strip-strip)

- Strip sensors 10x10 cm²
- 2x5 cm long strips, 90 µm pitch

- **Stubs:** Correlated pairs of clusters, consistent with ≥ 2 GeV track
	- Data reduction at trigger readout
	- ‣ *Stubs form input to track finding*

HL-LHC conditions

- 40 million bunch crossings / second, each on average 200 interactions
- ~33 charged particles from minbias events @ 14 TeV
	- ‣ 6600 charged particles / bunch crossing!
	- \sim 180 tracks with $p_T > 2$ GeV per event

Challenges

- **Combinatorics** \Rightarrow 15-20K input stubs / BX
- **Data volumes** \Rightarrow up to \sim 50 Tbits/s
- L1 trigger decision within 12.5 µs ^(*) ⇒ **time available for track finding ~4 µs**

- A track-trigger operating at 40 MHz with <10 µs latency has never been built!
	- ‣ **CDF:** L2 with lower input rate & less dense environment
	- **ATLAS FTK:** After L1 with lower input rate & longer latency

Track trigger strategy

- **Parallelization**
- \triangleright Divide tracker in segments in ϕ / z
- ‣ Time-multiplexed systems -- process several BX simultaneously
- Different approaches to attack combinatorics & occupancies

CMS track triggering

R&D efforts ongoing - different approaches for handling occupancies & combinatorics

Tracklet method

Tracklet approach

- Minimal hardware system based on commercial **FPGAs**
- ‣ Off-the-shelf hardware **Example Firmware Comparisons (1)**

■ Diff-the-shelf hardware
	- ▶ Ever-increasing capability + programming flexibility → ideal for fast track finding **J. L. L. L. L. L. L. L. L.**
- Tracklet algorithm ‣ Now **large-scale, sequential event processing**, updated algorithm in
	- **‣ Road search algorithm** \triangleright Koad search algorithm
	- ‣ Few (simple) calculations **P Few (SIMPIE) Calculations**
	- ‣ Parallelized processing in time & space • Parallelized processing in time & space
		- Naturally pipelined implementation
- Operates at a fixed latency -- truncate if necessary • Develop SW tools for large-scale comparisons

Tracklet algorithm: Seeding

- **Seed** by forming tracklets
- In Pairs of stubs in adjacent layers/disks \overline{a}
- Initial tracklet parameters from stubs + beamspot constraint neamspot constraints and the second state of the second state \sim
	- \triangleright Consistent with $p_T > 2$ GeV

Tracklet algorithm: Seeding $\begin{array}{cc} \begin{array}{ccc} \text{1000} & \text{1000} & \text{1000} \end{array} \end{array}$ • Comparisons: \mathbf{F} ealr

- **Seed** by forming tracklets
- In Pairs of stubs in adjacent layers/disks \overline{a} ▶ Pairs of stubs in adjacent layer
- ▶ Initial tracklet parameters from stubs + beamspot constraint neamspot constraints and the second state of the second state \sim
- \triangleright Consistent with $p_T > 2$ GeV \rightarrow Consistent with $p_T > 2$ GeV

Seed multiple times in *parallel* to ensure good coverage & redundancy

Tracklet algorithm: Project

- Project tracklets to other layers & r roject traditions to other layers a Project tracklete to other levere
	- Use predefined search windows
	- Project both inside-out & outside-in

layers/disks done in parallel!

$\begin{array}{cc} \text{Tracklet algorithm:} \end{array}$ **Fit**

- Perform track fit of stubs matched r chom mack in or star.
to trajectory Porform track fit of stube matche neighboring layers and the control of the control o
In the control of th
	- Linearized x^2 fit
	- Gives final track parameters
		- ‣ pT, η, φ0, z0
		- \triangleright Optionally d₀

Tracklet algorithm: Duplicate Removal

- A given track can be found many regiven tradition for round manpairs of layers \overline{A} \overline{A} given track can be found many
	- **Ensures high efficiency**
	- Remove duplicates based on shared stubs
		- ‣ Compare pairs of tracks & count # independent / shared stubs

Tracking performance

- Efficiency as function of η for single particles (e/µ/π)
- High efficiencies achieved
- Minimal impact from truncation

Tracking performance

- **σ(z0) ~ 1 mm** for wide range of η thanks to PS modules
- $\sigma(p_T)/p_T \sim 1\%$ at central η for high-p_T track

- *Already good enough resolution for trigger*
- *Known degradation from using too few bits in certain points of calculations, can be corrected*

... how to implement this?

Algorithm implementation

- Simulations of method
	- **Floating-point** simulation (C++)
	- ‣ **Integer emulation** of firmware (C++)
	- **FPGA firmware simulation** (Vivado)
- Hardware implementation
	- ‣ Currently implemented in firmware as two projects (**half barrel** vs **hybrid+disks**)

Hardware configuration

- System replicated for parallel data processing
- -
	-
- -
-

Hardware configuration

- System replicated for parallel data processing
- Divide detector in φ sectors
	- Tracks with $p_T > 2$ GeV span max. 2 sectors
	- Dedicated processing board for each sector
-

Hardware configuration

- System replicated for parallel data processing
- Divide detector in φ sectors
	- Tracks with $p_T > 2$ GeV span max. 2 sectors
	- Dedicated processing board for each sector
- System time multiplexed by factor 4-8
	- ‣ New event every 100-200 ns
-

Hardware configuration Segmentation: Sectors

- System replicated for parallel data processing volume in a single FPGA i
The single FPGA in a singl
- Divide detector in φ sectors $\mathsf{r}\mathsf{s}$
	- Tracks with $p_T > 2$ GeV span max. 2 sectors
	- Dedicated processing board for each sector
- System time multiplexed by factor 6
	- ‣ New event every 150 ns
- Tracklet formation within sector, projections to neighboring sectors sent there for stub matching

Challenge of combinatorics

- Main challenge -- combinatorics in forming tracklets & matching projections
- Subdivide layers & sector into smaller units to allow parallel processing

memories processing modules

NF
I **ur** STUB Stub organization Forming tracklets Projection transmission to neighbors **memories processing modules** INPUT

memories

Demonstrator

- Demonstrate that full tracking chain meets required performance within available latency
	- ‣ For final system process each sector with a single (future) FPGA
	- **‣ 2016 demonstrator**
		- *• φ sector for barrel vs hybrid+disk projects*
- Process many simulated events in sequence

Demonstrator hardware

- Sector boards for demonstrator -- **µTCA boards**
	- ▶ Xilinix Virtex-7 FPGA + Zynq chip for outside communication s of the form our state community
	- ‣ AMC13 card provides central clock distribution → AMC13 card provides central clock distribution al clock distribution

Boards developed by University of Wisconsin

Test stand @ CERN

Demonstrator results

 \checkmark C++ emulation vs firmware implementation:
- single μ : 100% agreement

v 100% agreement

output & Vivado firmware simulation

ttbar+PU=200: >99% agreement ✓ 100% agreement between board

Latency measurement

- A full end-to-end latency measurement done using clock counter
	- ‣ 240 MHz clock (same as processing clock)
	- Implemented on input emulator board
- First track out latency: 800 clks = **3.33 µs**
- Well within budget (4ps)!

- Compare with latency model
	- Each processing step has fixed latency \Rightarrow 3.35 μ s
	- In good agreement with measured latency (3 clks / 0.38% difference)

Summary

Conclusions

- Incorporating tracking in L1 trigger critical to achieve required rate reductions for CMS at HL-LHC
- Highly challenging -- track triggering on this scale never implemented before
	- ‣ Aggressive R&D efforts ongoing
	- ‣ System demonstrators in 2016 show feasibility of the systems
- One of these efforts: **tracklet approach**
	- ‣ Road search algorithm using commercial FPGAs
	- Manage data volume & combinatorics -- segmentation & parallel processing
	- Feasibility demonstrated!
		- *• Implemented on Virtex-7 FPGAs with 3.33 µs latency*
	- **Ongoing work**
		- *• Improvements to improve load balancing & reduce latency even further*
		- *• Migrate to new tracker geometry*