SMII Standard Model II Exam 2019

Answer any Four questions

3 Hours

The numbers in square brackets in the right-hand margin indicate a provisional allocation of maximum possible marks for different parts of each question.

(Answer ANY FOUR questions)

Note: only four answers will be marked

1. (a) Starting from the Lagrangian for a fermionic field show that $\bar{\psi}$ satisfies the equation

$$\bar{\psi}\left(-i\overleftarrow{\partial} - m\right) = 0$$

where the arrow over ∂ implies the derivative acts on $\bar{\psi}$. Verify that this is equivalent to the usual manner of writing the Dirac equation in terms of $\psi(x)$.

[4] (b) For a photon with a mass m, the Lagrangian can be written as

$$\mathcal{L} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} + \frac{1}{2} m^2 A^{\mu} A_{\mu}.$$

Define $F^{\mu\nu}$. Show that when this mass term is added Maxwell's equation $\partial_{\mu}F^{\mu\nu}=0$ becomes instead $\partial_{\mu}F^{\mu\nu}+m^2A^{\nu}=0$.

[4]

[4]

- (c) Taking the divergence of this show that $\partial \cdot A = 0$, i.e. gauge fixing is automatic in this case. Hence show that $(\partial_{\mu}\partial^{\mu} + m^2)A^{\nu} = 0$. [4]
- (d) The orthogonality property for the traces of generators may be written for any semi-simple Lie algebra as

$$\operatorname{tr}\{T_a^R T_b^R\} = T(R)\delta_{ab}$$

where T(R) depends on the representation. Use this result and the commutation relations of the algebra

$$[T_a, T_b] = i f_{abc} T_c$$

to show that independent of R the structure constants are totally antisymmetric.

(e) Prove the Jacobi identity

$$f_{abd}f_{dce} + f_{bcd}f_{dae} + f_{cad}f_{dbe} = 0$$

for these structure constants. [4]

2. (a) Consider a scalar field theory with a scalar with components ϕ_r . The potential for the field $V(\phi)$ is invariant under infinitesimal transformations

$$\delta \phi = iT_a \chi_a \phi$$
, $a = 1, \dots \dim G$,

where T_a are the dim G generators of invariance group G in the representation defined by ϕ and χ_a are some infinitesimal parameters. The potential has a degenerate vacuum labelled by Φ_0 . t_i are the generators of H, which is the stability group for $\phi_0 \in \Phi_0$, i.e.

$$t_i\phi_0=0$$
, $i=1,\ldots\dim H$.

Choosing a basis for the generators such that

$$T_a = (t_i, T_{\hat{a}})$$
,

with $T_{\hat{a}}$ orthogonal to t_i , prove, by expanding about the vacuum ϕ_0 , that there are dim G – dim H massless scalars.

[7]

[8]

(b) A gauge theory for the group G is described by the Lagrangian,

$$\mathcal{L} = -\frac{1}{4} F^{\mu\nu}{}_{a} F_{\mu\nu a} + \frac{1}{2} (D^{\mu} \phi) \cdot D_{\mu} \phi - V(\phi) ,
F_{\mu\nu a} = \partial_{\mu} A_{\nu a} - \partial_{\nu} A_{\mu a} - g c_{abc} A_{\mu b} A_{\nu c} , \quad D_{\mu} \phi = \partial_{\mu} \phi + ig A_{\mu a} T_{a} \phi ,$$

with $a = 1, \dots \dim G$ and T_a anti-symmetric matrices, in the basis provided by real representation ϕ , representing the Lie algebra of G.

Suppose $V(\phi)$ is minimized at $\phi = \phi_0$ and that we fix the gauge invariance by imposing the 't Hooft gauge condition

$$\mathcal{L}_{g.f.} = -\frac{1}{2} \left(\partial^{\mu} A_{\mu a} + ig\phi \cdot (T_a \phi_0) \right) \left(\partial^{\nu} A_{\nu a} + ig\phi \cdot (T_a \phi_0) \right).$$

If $\phi = \phi_0 + f$ derive the decoupled linearised equations of motion for the vector, scalar fields,

$$\partial^2 A_{\mu a} - g^2 (T_a \phi_0) \cdot (T_b \phi_0) A_{\mu b} = 0, \quad \partial^2 f + \mathcal{M} f - g^2 (T_a \phi_0) (T_a \phi_0) \cdot f = 0,$$

where \mathcal{M} is a matrix determined by the second derivatives of $V(\phi)$ at $\phi = \phi_0$.

(c) Show that the unbroken gauge group H has corresponding gauge fields which are massless and that the would-be Goldstone modes in f appear to be massive particles in addition to the remaining massive vector fields. [5]

SMII/2019 2 CONTINUED

3. (a) The Lagrangian for the gauge-scalar sector of the standard model may be written as,

$$\mathcal{L} = -\frac{1}{4} \mathbf{F}^{\mu\nu} \cdot \mathbf{F}_{\mu\nu} - \frac{1}{4} G^{\mu\nu} G_{\mu\nu} + (D^{\mu}\phi) \cdot D_{\mu}\phi - \frac{1}{8} \lambda (\phi^2 - v^2)^2,$$

where

$$\mathbf{F}_{\mu\nu} = \partial_{\mu}\mathbf{A}_{\nu} - \partial_{\nu}\mathbf{A}_{\mu} + g\,\mathbf{A}_{\mu} \times \mathbf{A}_{\nu} , G_{\mu\nu} = \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu}$$
$$(D^{\mu}\phi) = (\partial^{\mu} + ig\frac{1}{2}\mathbf{A}^{\mu}(\mathbf{x}) \cdot \sigma + i\frac{1}{2}g'B^{\mu}(x)),$$

and \mathbf{A}_{μ} is the vector of SU(2) gauge fields, B_{μ} is the $U(1)_{Y}$ gauge field and ϕ is a complex scalar doublet. σ_{i} are the Pauli matrices and g' may be written as $g \tan \theta_{W}$.

Explain why the scalar doublet can be written as

$$\phi(x) = \exp(-i\mathbf{n}(\mathbf{x}).\sigma + i\mathbf{n}_3(\mathbf{x})) \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + H(x) \end{pmatrix},$$

where $\mathbf{n} = (\mathbf{n_1}, \mathbf{n_2}, \mathbf{n_3})$, and why in unitary gauge we can eliminate the fields in $\exp(-i\mathbf{n}(\mathbf{x}).\sigma + i\mathbf{n_3}(\mathbf{x}))$ completely.

[5]

- (b) Determine the simultaneous mass and charge eigenstates for the gauge fields by writing the scalar-boson interactions in terms of the physical fields Z_{μ} , W_{μ}^{\pm} , and show that the photon field A_{μ} decouples from the scalar and is massless. Find also the mass of the scalar field and the relationship between the masses m_W and m_Z .
- [10]
- (c) Consider the part of the Lagrangian coupling the gauge bosons to the first generation lepton fields

$$\mathcal{L}_{\text{lept.}} = \bar{L}(x)i\gamma^{\mu}\partial_{\mu}L(x) + \bar{R}(x)i\gamma^{\mu}\partial_{\mu}R(x) - g\bar{L}\gamma^{\mu}\frac{1}{2}\sigma L.\mathbf{A}_{\mu} + g'(\frac{1}{2}\bar{L}\gamma^{\mu}L + \bar{R}\gamma^{\mu}R)B_{\mu}.$$

Show that the weak neutral current, i.e. the current coupling to the Z boson may be written as

[5]

$$J_n^{\mu} = \frac{1}{2} \left[\overline{\nu}_e \gamma^{\mu} (1 - \gamma_5) \nu_e - \overline{e} \gamma^{\mu} (1 - \gamma_5 - 4 \sin^2 \theta_W) e \right] .$$

4. (a) In unitary gauge the scalar doublet in the Standard Model can be written as $\phi(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + H(x) \end{pmatrix}$, and has hypercharge $Y = \frac{1}{2}$. Show in full detail that the *conjugate* doublet $\phi^c(x) = i\sigma_2\phi(x)^*$ has the appropriate gauge transformation properties to give the up quark a mass via the interaction term

$$\mathcal{L}_{q\phi} = -\sqrt{2}[\bar{L}f^+\phi^c R_m^+ + \text{hermitian conjugate}],$$

where
$$L = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$$
, $R^+ = u_R$ and f^+ is an arbitrary coupling. [7]

(b) When we consider three families the constant f^+ becomes a matrix and there is a similar matrix with elements f^- for the down-type quarks. The diagonalization of these matrices leads to the weak charged current having the form

$$J^{\mu} = (\bar{u}, \ \bar{c}, \ \bar{t}) \gamma^{\mu} (1 - \gamma^5) V_{CKM} \begin{pmatrix} d \\ s \\ b \end{pmatrix},$$

where V_{CKM} is a unitary matrix and the quarks are expressed in terms of mass eigenstates. Explain why V_{CKM} contains three independent angles and one complex phase and why for massless neutrinos there is no similar mixing in the charged current interactions.

(c) The charged current interaction term in the Lagrangian is

$$\mathcal{L}_{cc} = -\frac{g}{2\sqrt{2}} (J^{\mu}W_{\mu} + J^{\mu\dagger}W_{\mu}^{\dagger}).$$

Show explicitly that under the combined parity and charge-conjugation transformations this Lagrangian is not invariant.

(d) Briefly justify why, if we have right-handed, and hence massive, neutrinos we can add a "Majorana" mass term

$$\mathcal{L}_M = -m_M[(\bar{\nu}(x)_R)^C \nu(x)_R + \text{hermitian conjugate}]$$

as well as the standard "Dirac" mass term, whereas such a term is not allowed for other fermions.

[Under parity transformations P

$$\psi(x) \to \gamma^0 \psi(x_P)$$
 $\bar{\psi}(x) \to \bar{\psi}(x_P) \gamma_0$ $W_{\mu}(x) \to W^{\mu}(x_P)$.

Under charge conjugation C

$$\psi(x) \to C\bar{\psi}^t(x)$$
 $\bar{\psi}(x) \to -\psi^t(x)C^{-1}$ $W_{\mu}(x) \to -W^{\dagger}_{\mu}(x)$,

where t denotes transpose and $C(\gamma^\mu)^tC^{-1}=-\gamma^\mu.]$

[4]

[6]

[3]

5. (a) Consider the decay process

$$\mu^-(p) \to e^-(k) + \overline{\nu}_e(q) + \nu_\mu(q').$$

Calculate the decay rate Γ for this process as explicitly as possible. You may start by assuming the matrix element for the decay is

$$\mathcal{M} = -\frac{G_F}{\sqrt{2}} \, \overline{u}_e(k) \gamma^{\alpha} (1 - \gamma_5) v_{\nu_e}(q) \, \overline{u}_{\nu_{\mu}}(q') \gamma_{\alpha} (1 - \gamma_5) u_{\mu}(p) ,$$

which leads to

$$\sum_{\text{spins}} |\mathcal{M}|^2 = \frac{G_F^2}{2} S_1^{\alpha\beta} S_{2\alpha\beta} ,$$

where, assuming the neutrinos have zero mass,

$$S_1^{\alpha\beta} = \operatorname{tr} \left\{ (\gamma.k + m_e) \gamma^{\alpha} (1 - \gamma_5) \gamma. q \gamma^{\beta} (1 - \gamma_5) \right\} ,$$

$$S_{2\alpha\beta} = \operatorname{tr} \left\{ (\gamma.p + m_{\mu}) \gamma_{\beta} (1 - \gamma_5) \gamma. q' \gamma_{\alpha} (1 - \gamma_5) \right\} .$$

Show that we can make the simplification

$$S_1^{\alpha\beta} S_{2\alpha\beta} = 256 \, p.q \, k.q' .$$

- (b) Demonstrate that this expression vanishes in a particular limit when $m_e \to 0$, and explain why this result is demanded by a conservation rule. [3]
- (c) The decay rate may be written as

$$\Gamma = \frac{G_F^2}{8m_\mu \pi^5} \int \frac{\mathrm{d}^3 k}{E_{\mathbf{k}}} \frac{\mathrm{d}^3 q}{E_{\mathbf{q}}} \frac{\mathrm{d}^3 q'}{E_{\mathbf{q}'}} \, \delta^4(p - k - q - q') \, p.q \, k.q' \, .$$

Show explicitly and in full detail that this reduces to

$$\Gamma = \frac{G_F^2}{3m_\mu(2\pi)^4} \int \frac{\mathrm{d}^3 k}{E_{\mathbf{k}}} \left(2p.(p-k) \, k.(p-k) + p.k \, (p-k)^2 \right) .$$

(d) Using the approximation that $m_e/m_\mu=0$ show that this becomes

$$\Gamma = \frac{2G_F^2 m_\mu}{3(2\pi)^3} \int_0^{\frac{1}{2}m_\mu} dE \, E^2 (3m_\mu - 4E) \ .$$

(e) Finally, evaluate the integral to obtain the result

$$\Gamma_{\mu^- \to e^- + \overline{\nu}_e + \nu_\mu} = \frac{G_F^2 m_\mu^5}{192\pi^3} \ .$$

[5]

[6]

[3]

[3]

6. (a) Consider the total cross-section for $e^-(p_1) + e^+(p_2) \to \gamma^*(p_1 + p_2 = q) \to q(k_1) + \overline{q}(k_2)$. Using the result that

$$\sum_{\text{spins}} |\mathcal{M}|^2 = 32 \frac{e^4 Q_q^2}{q^4} \left[(k_1 \cdot p_1)(k_2 \cdot p_2) + (k_1 \cdot p_2)(k_2 \cdot p_1) \right],$$

show that at lowest order

$$\frac{\mathrm{d}\sigma_{e^-e^+\to q\bar{q}}}{\mathrm{d}\Omega} = \frac{\alpha^2}{4q^2} Q_q^2 (1 + \cos^2 \theta),$$

where $\alpha = e^2/4\pi$, θ is the angle between the outgoing quark and the axis of the incoming electron and positron in the centre of mass frame, and Q_q is the fractional quark charge. Prove that integrating over the solid angle

$$\sigma_{e^-e^+ \to q\bar{q}} = \frac{4\pi\alpha^2}{3q^2} Q_q^2.$$

You may assume that $\sqrt{q^2} \gg m_q, m_e$.

(b) Explain why at leading order this means that (to a good approximation) [4]

$$\sigma_{e^-e^+ \to \text{hadrons}} = \frac{4\pi\alpha^2}{3q^2} \, 3 \sum_f Q_f^2 \, .$$

- (c) Discuss why beyond leading order the cross-section for quark-antiquark production is not a well-defined physical quantity, and how one may calculate the total hadron cross-section.
- (d) Beyond LO the cross-section may be written as

$$\sigma_{e^-e^+ \to \text{hadrons}} = \frac{4\pi\alpha^2}{3q^2} \, 3 \sum_f Q_f^2 \, K(\alpha_s(\mu^2), q^2/\mu^2) \,,$$

where at $\mathcal{O}(\alpha_s^2)$

$$K(\alpha_s(\mu^2), q^2/\mu^2) = 1 + \frac{\alpha_s(\mu^2)}{\pi} + \frac{\alpha_s^2(\mu^2)}{\pi^2} \left(1.99 - 0.11 n_f - \pi \frac{\beta_0}{4\pi} \ln(q^2/\mu^2) \right).$$

One way of choosing the arbitrary scale μ is to demand that

$$\frac{dK(\alpha_s(\mu^2), q^2/\mu^2)}{d \ln \mu^2} = 0.$$

Using the renormalization group equation for the strong coupling

$$\frac{d\alpha_s}{d\ln\mu^2} = -\frac{\beta_0}{4\pi}\alpha_s^2,$$

[8]

[4]

where $\beta_0 = 11 - 2/3n_f$, and n_f is the number of quark flavours, determine the value of μ^2 this prescription imposes.

You may use

$$\sigma = \frac{1}{4F} \frac{1}{4} \sum_{\text{spins}} \int \frac{d^3 \mathbf{k_1}}{(2\pi)^3 2E_{\mathbf{k_1}}} \frac{d^3 \mathbf{k_2}}{(2\pi)^3 2E_{\mathbf{k_2}}} (2\pi)^4 \delta^4(p_1 + p_2 - k_1 - k_2) |M|^2$$

where the flux factor $F = 4\sqrt{(p_1.p_2)^2 - m_1^2 m_2^2} = 2q^2$, where we let $m_1, m_2 \rightarrow 0$.

END OF PAPER

[4]