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(Answer ANY FOUR questions)
Note: only four answers will be marked

1. (a) Starting from the Lagrangian for a fermionic field show that ψ̄ satisfies the
equation

ψ̄ (−i
←
/∂ −m) = 0

where the arrow over /∂ implies the derivative acts on ψ̄. Verify that this is
equivalent to the usual manner of writing the Dirac equation in terms of ψ(x).

[4]

(b) For a photon with a mass m, the Lagrangian can be written as

L = −1

4
F µνFµν +

1

2
m2AµAµ.

Define F µν . Show that when this mass term is added Maxwell’s equation
∂µF

µν = 0 becomes instead ∂µF
µν +m2Aν = 0. [4]

(c) Taking the divergence of this show that ∂ ·A = 0, i.e. gauge fixing is automatic
in this case. Hence show that (∂µ∂

µ +m2)Aν = 0. [4]

(d) The orthogonality property for the traces of generators may be written for
any semi-simple Lie algebra as

tr{TRa TRb } = T (R)δab

where T (R) depends on the representation. Use this result and the commu-
tation relations of the algebra

[Ta, Tb] = ifabcTc

to show that independent of R the structure constants are totally antisym-
metric. [4]

(e) Prove the Jacobi identity

fabdfdce + fbcdfdae + fcadfdbe = 0

for these structure constants. [4]
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2. (a) Consider a scalar field theory with a scalar with components φr. The potential
for the field V (φ) is invariant under infinitesimal transformations

δφ = iTaχaφ , a = 1, . . . dimG ,

where Ta are the dimG generators of invariance group G in the representation
defined by φ and χa are some infinitesimal parameters. The potential has a
degenerate vacuum labelled by Φ0. ti are the generators of H, which is the
stability group for φ0 ∈ Φ0, i.e.

tiφ0 = 0 , i = 1, . . . dimH .

Choosing a basis for the generators such that

Ta = (ti, Tâ) ,

with Tâ orthogonal to ti, prove, by expanding about the vacuum φ0, that there
are dimG− dimH massless scalars. [7]

(b) A gauge theory for the group G is described by the Lagrangian,

L = −1
4
F µν

aFµνa + 1
2

(Dµφ)·Dµφ− V (φ) ,
Fµνa = ∂µAνa − ∂νAµa − g cabcAµbAνc , Dµφ = ∂µφ+ ig AµaTaφ ,

with a = 1, . . . dimG and Ta anti-symmetric matrices, in the basis provided
by real representation φ, representing the Lie algebra of G.

Suppose V (φ) is minimized at φ = φ0 and that we fix the gauge invariance by
imposing the ’t Hooft gauge condition

Lg.f. = −1
2

(
∂µAµa + igφ·(Taφ0)

)(
∂νAνa + igφ·(Taφ0)

)
.

If φ = φ0 + f derive the decoupled linearised equations of motion for the
vector, scalar fields,

∂2Aµa − g2(Taφ0)·(Tbφ0)Aµb = 0 , ∂2f +Mf − g2(Taφ0) (Taφ0)·f = 0 ,

whereM is a matrix determined by the second derivatives of V (φ) at φ = φ0.
[8]

(c) Show that the unbroken gauge group H has corresponding gauge fields which
are massless and that the would-be Goldstone modes in f appear to be massive
particles in addition to the remaining massive vector fields. [5]
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3. (a) The Lagrangian for the gauge-scalar sector of the standard model may be
written as ,

L = −1

4
Fµν ·Fµν −

1

4
GµνGµν + (Dµφ)·Dµφ−

1

8
λ
(
φ2 − v2

)2
,

where

Fµν = ∂µAν − ∂νAµ + gAµ ×Aν , Gµν = ∂µBν − ∂νBµ

(Dµφ) = (∂µ + ig 1
2
Aµ(x) · σ + i1

2
g′Bµ(x)),

and Aµ is the vector of SU(2) gauge fields, Bµ is the U(1)Y gauge field and φ
is a complex scalar doublet. σi are the Pauli matrices and g′ may be written
as g tan θW .

Explain why the scalar doublet can be written as

φ(x) = exp(−in(x).σ + in3(x))
1√
2

(
0

v +H(x)

)
,

where n = (n1,n2,n3), and why in unitary gauge we can eliminate the fields
in exp(−in(x).σ + in3(x)) completely. [5]

(b) Determine the simultaneous mass and charge eigenstates for the gauge fieldsby
writing the scalar-boson interactions in terms of the physical fields Zµ, W±

µ ,
and show that the photon field Aµ decouples from the scalar and is massless.
Find also the mass of the scalar field and the the relationship between the
masses mW and mZ . [10]

(c) Consider the part of the Lagrangian coupling the gauge bosons to the first
generation lepton fields

Llept. = L̄(x)iγµ∂µL(x)+R̄(x)iγµ∂µR(x)−gL̄γµ 1
2
σL.Aµ+g′(1

2
L̄γµL+R̄γµR)Bµ.

Show that the weak neutral current, i.e. the current coupling to the Z boson
may be written as [5]

Jµn = 1
2

[
νeγ

µ(1− γ5)νe − eγµ(1− γ5 − 4 sin2 θW )e
]
.
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4. (a) In unitary gauge the scalar doublet in the Standard Model can be written

as φ(x) = 1√
2

(
0

v +H(x)

)
, and has hypercharge Y = 1

2
. Show in full de-

tail that the conjugate doublet φc(x) = iσ2φ(x)∗ has the appropriate gauge
transformation properties to give the up quark a mass via the interaction term

Lqφ = −
√

2[L̄f+φcR+
m + hermitian conjugate],

where L =

(
uL
dL

)
, R+ = uR and f+ is an arbitrary coupling. [7]

(b) When we consider three families the constant f+ becomes a matrix and there
is a similar matrix with elements f− for the down-type quarks. The diag-
onalization of these matrices leads to the weak charged current having the
form

Jµ =
(
ū, c̄, t̄

)
γµ(1− γ5)VCKM

ds
b

 ,

where VCKM is a unitary matrix and the quarks are expressed in terms of
mass eigenstates. Explain why VCKM contains three independent angles and
one complex phase and why for massless neutrinos there is no similar mixing
in the charged current interactions. [4]

(c) The charged current interaction term in the Lagrangian is

Lcc = − g

2
√

2
(JµWµ + Jµ†W †

µ).

Show explicitly that under the combined parity and charge-conjugation trans-
formations this Lagrangian is not invariant. [6]

(d) Briefly justify why, if we have right-handed, and hence massive, neutrinos we
can add a “Majorana” mass term

LM = −mM [(ν̄(x)R)Cν(x)R + hermitian conjugate]

as well as the standard “Dirac” mass term, whereas such a term is not allowed
for other fermions. [3]

[Under parity transformations P

ψ(x)→ γ0ψ(xP ) ψ̄(x)→ ψ̄(xP )γ0 Wµ(x)→ W µ(xP ).

Under charge conjugation C

ψ(x)→ Cψ̄t(x) ψ̄(x)→ −ψt(x)C−1 Wµ(x)→ −W †
µ(x),

where t denotes transpose and C(γµ)tC−1 = −γµ.]
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5. (a) Consider the decay process

µ−(p)→ e−(k) + νe(q) + νµ(q′).

Calculate the decay rate Γ for this process as explicitly as possible. You may
start by assuming the matrix element for the decay is

M = −GF√
2
ue(k)γα(1− γ5)vνe(q)uνµ(q′)γα(1− γ5)uµ(p) ,

which leads to ∑
spins

|M|2 =
G 2
F

2
S1
αβS2αβ ,

where, assuming the neutrinos have zero mass,

S1
αβ = tr

{
(γ.k +me)γ

α(1− γ5)γ.qγβ(1− γ5)
}
,

S2αβ = tr
{

(γ.p+mµ)γβ(1− γ5)γ.q′γα(1− γ5)
}
.

Show that we can make the simplification [5]

S1
αβS2αβ = 256 p.q k.q′ .

(b) Demonstrate that this expression vanishes in a particular limit when me → 0,
and explain why this result is demanded by a conservation rule. [3]

(c) The decay rate may be written as

Γ =
G 2
F

8mµπ5

∫
d3k

Ek

d3q

Eq

d3q′

Eq′
δ4(p− k − q − q′) p.q k.q′ .

Show explicitly and in full detail that this reduces to [6]

Γ =
G 2
F

3mµ(2π)4

∫
d3k

Ek

(
2p.(p− k) k.(p− k) + p.k (p− k)2

)
.

(d) Using the approximation that me/mµ = 0 show that this becomes [3]

Γ =
2G 2

F mµ

3(2π)3

∫ 1
2
mµ

0

dE E2(3mµ − 4E) .

(e) Finally, evaluate the integral to obtain the result [3]

Γµ−→e−+νe+νµ =
G 2
F m

5
µ

192π3
.
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6. (a) Consider the total cross-section for e−(p1) + e+(p2) → γ?(p1 + p2 = q) →
q(k1) + q(k2). Using the result that∑

spins

|M|2 = 32
e4Q2

q

q4

[
(k1 · p1)(k2 · p2) + (k1 · p2)(k2 · p1)

]
,

show that at lowest order

dσe−e+→qq̄
dΩ

=
α2

4q2
Q2
q (1 + cos2 θ) ,

where α = e2/4π, θ is the angle between the outgoing quark and the axis of
the incoming electron and positron in the centre of mass frame, and Qq is the
fractional quark charge. Prove that integrating over the solid angle

σe−e+→qq =
4πα2

3q2
Q2
q .

You may assume that
√
q2 � mq,me. [8]

(b) Explain why at leading order this means that (to a good approximation) [4]

σe−e+→hadrons =
4πα2

3q2
3
∑
f

Q2
f .

(c) Discuss why beyond leading order the cross-section for quark-antiquark pro-
duction is not a well-defined physical quantity, and how one may calculate
the total hadron cross-section. [4]

(d) Beyond LO the cross-section may be written as

σe−e+→hadrons =
4πα2

3q2
3
∑
f

Q2
f K(αs(µ

2), q2/µ2) ,

where at O(α2
s)

K(αs(µ
2), q2/µ2) = 1 +

αs(µ
2)

π
+
α2
s(µ

2)

π2

(
1.99− 0.11nf − π

β0

4π
ln(q2/µ2)

)
.

One way of choosing the arbitrary scale µ is to demand that

dK(αs(µ
2), q2/µ2)

d lnµ2
= 0.

Using the renormalization group equation for the strong coupling

dαs
d lnµ2

= − β0

4π
α2
s,
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where β0 = 11 − 2/3nf , and nf is the number of quark flavours, determine
the value of µ2 this prescription imposes. [4]

[You may use

σ =
1

4F

1

4

∑
spins

∫
d3k1

(2π)32Ek1

d3k2

(2π)32Ek2

(2π)4δ4(p1 + p2 − k1 − k2)|M |2

where the flux factor F = 4
√

(p1.p2)2 −m2
1m

2
2 = 2q2, where we let m1,m2 →

0.]

END OF PAPER
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