ELogs/SaadShaikh
< ELogs
Electronic Log for Saad Shaikh
To Do
Last updated 04/11/20
- FPGA programming
- Output data via USB 2.0 using Nexys Video.
- Calculate photodiode charge uncertainty.
- Data analysis
- Shift HIT PDLs by WEPL of accelerator components/air and implement adaptive alpha/p calculation.
- Detector simulation
- Reinstall GEANT4 with correct Qt5 usage to fix visualisation bug in MacOS Catalina.
- Rebuild Laurent's QuARC simulation to fix bugs and enable multi-threading.
- Improve accuracy of optical properties.
- Heavy-ion fitting
- Acquire HIT FLUKA tables for He, C and O beams.
- Re-read relevant papers and implement Kramer's model for protons.
- Implement Kramer's model for helium ions using cross-section formulae in Kramer 2016.
- Implement Kramer's model for carbon ions: get in touch with Lenny or Kramer to discuss how to obtain cross-section data.
Dates 2020
Date | Event |
---|
PhD Year 1 Completed
- Review of literature given by Laurent
- Delivered MSci presentation to PG Physics Society.
- Set up environment in Eclipse for analysis code to fit Bortfeld and quenched Bortfeld Bragg curves to simulated data and data from range telescope.
- Tested analysis routines on simulated and raw data.
- HEP PG courses in term 1: SM1, SM2 & topics in particle physics.
- Medical physics course in term 1: Treatment with Ionising Radiation.
- Passed Standard Model exams: 80% SM1 and 48% SM2.
- Analysis of effects of beam spot size on range reconstruction from April 2019 HIT data, also with photodiode approximation. Results shown in this presentation
- Medical physics courses in term 2: Radiotherapy Physics & Medical Imaging with Ionising Radiation.
- Installed GEANT4 locally on MacOS High Sierra and Catalina, set up environment in Eclipse.
- Can successfully run simulation of range telescope with different parameters and analyse output data.
- Fully implemented Laurent's analysis code and made improvements for better code practice, better parameter estimation and started framework for He and C fitting.
- Analysis of performance of quenched Bortfeld model with heavy ions, results shown in this presentation
- Analysis of SOBP data, results shown in this presentation
- Preliminary testing of 2nd order Birks' Law, results shown in this presentation
- Presented on I/O signals and operation of TI DDC232CK based on datasheet information. Slides available here.
- Wrote code to interface FPGA with DDC232 and tested in simulation. Results of simulation discussed here.
- Interfaced DDC232 code with a UART transmitter, discussed UART interface in this presentation.
- DDC232 code operational, first tests discussed in this presentation.
- Implemented further features in DDC232 design, demo given in this presentation.
- Added FIFO between DDC232 and UART transmitter and wrote ROOT macro to plot live photodiode data being saved by CoolTerm on MacOS.
- Wrote PBT Wiki pages on Zybo Z7 and DDC232 and QuARC Data Analysis.
- Implemented readout before and after CONV toggles in FPGA design, to access shortest possible DDC232 integration times.
- Submitted transfer report.
- Delivered transfer talk.
- Completed transfer mini-viva and passed Upgrade.
- Ported FPGA design to Nexys Video.
- Can set FSR remotely and choose between several integration times using on-board switches.
MSci Completed
- Literature review.
- First Birmingham experimental run.
- Wrote code to load and plot Caen digitiser data in histograms.
- Overhauled LeCroy data analysis routines: (short region) double baseline sigma testing, dynamic integration window allocation, empty acquisition checks.
- Wrote code to scale and plot LeCroy & Caen data onto single plot, using approximate x and y-scale factors.
- Wrote code to load and plot PRaVDA data in 2D histograms.
- Wrote code to correlate tracker and calorimeter measurements, to produce a list of events with X, Y, E coordinates.
- Wrote code to plot matched events into various 3D histograms: XY, XE, YE.
- Progress report.
- Progress interview.
- Improved LeCroy & Caen matching by finding x-scale factor through chi-square minimisation.
- All runs from first Birmingham put through matching algorithm. Energy spectra, 2D tracker histograms, and 3D XY, XE & YE histograms plotted for all runs (187 plots).
- Wrote code to plot 3D XY histograms, but with the height of bars being the average energy in the bin.
- Improved LeCroy & Caen matching by finding y-scale factor through chi-square minimisation or through peak event counting. Peak event counting method best.
- Converted energy to range in XYE histogram.
- Plotted 2D number density histogram alongside 3D XYRange histogram.
- Produced poster for PPRIG 2019 of experiment with single-module calorimeter and PRaVDA tracker.
- Attended PPRIG 2019.
- Completed MSci Final report.
- Delivered presentation on project.
- Attended PTCOG 2019.