Proton Calorimetry/Equipment: Difference between revisions

From PBTWiki
Jump to navigation Jump to search
No edit summary
 
(69 intermediate revisions by 7 users not shown)
Line 1: Line 1:
This page contains information on the various pieces of experimental equipment that form the Proton Calorimetry detector setup.
This page contains information on the various pieces of experimental equipment that form the Proton Calorimetry detector setup.
== [[/QuARC General Information|General Information]] ==
Summary of QuARC components and codes needed.
== [[/FPGAs_DDC232|FPGAs: Nexys Video, USB104, Zybo Z7 and DDC232 Interface]] ==
The DDC232 is a 32-channel ADC. Housed on a custom circuit board, it used to measure the charges of 16 photodiodes and is interfaced with a Nexys Video.
More details can be found on the [[/FPGAs_DDC232|FPGAs: Nexys Video, USB104, Zybo Z7 and DDC232 Interface]] page.
== [[/Photodiode_Interface_Boards|DDC232-based Photodiode Interface Boards]] ==
Custom ADC boards that take standard photodiodes have been designed that are based on the TI DDC232 and interface to an FPGA.
More details can be found on the [[/Photodiode_Interface_Boards|DDC232-based Photodiode Interface Boards]] page.
== [[/Inventory Location|D106 Inventory and Location]] ==
The list of items and tools stored in D106, updated on Dec 2020, is available on the [[/Inventory Location|D106 Inventory and Location]] page.
== [[/ISDI CMOS Sensor|ISDI CMOS Sensor]] ==
The [https://www.isdicmos.com/products ISDI 1510-100 15x10cm CMOS pixel sensor] allows images of the scintillator detector stack light output to be recorded. 
More details can be found on the [[/ISDI CMOS Sensor|ISDI CMOS Sensor]] page.


== [[/Caen Detector Emulator|Caen Detector Emulator]] ==
== [[/Caen Detector Emulator|Caen Detector Emulator]] ==
Line 7: Line 33:
More details can be found on the [[/Caen Detector Emulator|Caen Detector Emulator]] page.
More details can be found on the [[/Caen Detector Emulator|Caen Detector Emulator]] page.


== LeCroy Scope Trace Conversion: Binary to ASCII ==
== [[/Nikon DSLR|Nikon D70 DSLR]] ==
 
A [https://www.nikonusa.com/en/nikon-products/product-archive/dslr-cameras/d70.html Nikon D70 DSLR] was borrowed from Adam Gibson in Medical Physics to allow remote acquisition of scintillator images.
 
More details can be found on the [[/Nikon DSLR|Nikon D70 DSLR]] page.
 
== [[/TI DDC1128EVM|TI DDC1128 Evaluation Module]] ==
The DDC1128EVM provides a platform for evaluating the DDC1128 charge digitizing A/D converters. A PC interface board and two DDC1128 devices are included along with software that makes analysis and testing of these devices manageable.


To convert .trc binary data to .txt data that is formatted similarly to the output files from a CAEN DT5751 digitiser:
More details can be found on the [[/TI DDC1128EVM|TI DDC1128 Evaluation Module]] page.


# Copy contents of <code>/unix/pbt/aknoetze/ConversionScripts</code> to a new directory.
== [[/Remote_Desktop_Access|Remote Desktop Access]] ==
# Open <code>trc2txt.py</code> in a text editor.
More details can be found on the [[/Remote_Desktop_Access|Remote Desktop Access]] page.
## Change path to directory containing .trc data files by editing variable <code>dirpath</code>
## Change number of decimal points for each column by editing: <code>np.savetxt(..., fmt=‘...’,...)</code>
# Run <code>trc2txt.py</code>


Converted .txt files will be in the copied directory <code>NEWASCII</code>. These new files will possess the same file names as the original .txt files.
== [[/HV|Connecting HV to DAQ Laptop]] ==
More details can be found on the [[/HV|Connecting HV to DAQ Laptop]] page.


To concatenate the new data files together into one single file, while in the directory <code>NEWASCII</code>,type:
== [[/LeCroy|LeCroy Oscilloscope]] ==
Details of the analysis of single-module calorimeter data taken by the LeCroy scope can be found on the [[/LeCroy|LeCroy Oscilloscope]] page.


<pre>
This page needs to be updated with work completed in the 2018-2019 academic year.
cat *.txt > OutputFileName.txt
</pre>


== Manuals ==
== Manuals ==

Latest revision as of 16:09, 29 May 2024

This page contains information on the various pieces of experimental equipment that form the Proton Calorimetry detector setup.

General Information

Summary of QuARC components and codes needed.

FPGAs: Nexys Video, USB104, Zybo Z7 and DDC232 Interface

The DDC232 is a 32-channel ADC. Housed on a custom circuit board, it used to measure the charges of 16 photodiodes and is interfaced with a Nexys Video.

More details can be found on the FPGAs: Nexys Video, USB104, Zybo Z7 and DDC232 Interface page.

DDC232-based Photodiode Interface Boards

Custom ADC boards that take standard photodiodes have been designed that are based on the TI DDC232 and interface to an FPGA.

More details can be found on the DDC232-based Photodiode Interface Boards page.

D106 Inventory and Location

The list of items and tools stored in D106, updated on Dec 2020, is available on the D106 Inventory and Location page.

ISDI CMOS Sensor

The ISDI 1510-100 15x10cm CMOS pixel sensor allows images of the scintillator detector stack light output to be recorded.

More details can be found on the ISDI CMOS Sensor page.

Caen Detector Emulator

The Caen DT5800D Detector Emulator provides the capability for emulating the output of an arbitrary detector system.

More details can be found on the Caen Detector Emulator page.

Nikon D70 DSLR

A Nikon D70 DSLR was borrowed from Adam Gibson in Medical Physics to allow remote acquisition of scintillator images.

More details can be found on the Nikon D70 DSLR page.

TI DDC1128 Evaluation Module

The DDC1128EVM provides a platform for evaluating the DDC1128 charge digitizing A/D converters. A PC interface board and two DDC1128 devices are included along with software that makes analysis and testing of these devices manageable.

More details can be found on the TI DDC1128 Evaluation Module page.

Remote Desktop Access

More details can be found on the Remote Desktop Access page.

Connecting HV to DAQ Laptop

More details can be found on the Connecting HV to DAQ Laptop page.

LeCroy Oscilloscope

Details of the analysis of single-module calorimeter data taken by the LeCroy scope can be found on the LeCroy Oscilloscope page.

This page needs to be updated with work completed in the 2018-2019 academic year.

Manuals

Manuals for relevant detector hardware.

WaveCatcher

WaveCatcherFamily_V1.2.pdf
Full description of the WaveCatcher Family hardware with paths to Control & Readout software and libraries. Covers the 2-channel and 8-channel WaveCatcher modules, the 16-Channel WaveCatcher board and module, and all the options of the 64-Channel WaveCatcher Crate (16, 32, 48 or 64 channels).
WaveCatcher64Ch_Library_1.1.16.pdf
Users manual for WaveCatcher64Ch Control and Readout Library
WaveCatcherSoftware_V1.1.pdf
User manual for the WaveCatcher Family Control & Readout software (Windows Only, includes scope-like GUI).

Caen

DT5751 Product Page
Caen product page for DT5751 2-4 Channel 10 bit 2/1 GS/s Digitizer.
DT5751 User Manual
User manual for DT5751 2-4 Channel 10 bit 2/1 GS/s Digitizer.
DT5740 Product Page
Caen product page for DT5740 16/32-Channel 12 bit 62.5MS/s Digitizer supporting DPP-QDC firmware.
DT5740 User Manual
User manual for the DT5740 Desktop 16/32-channel Desktop Digitizer, that also functions in QDC charge integration mode with the DPP-QDC firmware.
UM4874_DPP-QDC_UserManual
User manual for the Digital Pulse Processing for Charge to Digital Converter DPP-QDC implemented exclusively for the "D" model of the 740 Digitizer series (740D).