The Spectra of Yang-Mills Gauge Theories with novel, non QCD-like dynamics

Eoin Kerrane

University of Edinburgh

May 15, 2009

University of Edinburgh

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Eoin Kerrane

Table of contents

Introduction

Features

Results

Eoin Kerrane

University of Edinburgh

A B > 4
 B > 4
 B

Outline

Introduction

Features

Results

Eoin Kerrane

University of Edinburgh

3

Image: A math a math

Why non QCD-like?

Eoin Kerrane

University of Edinburgh

Image: A math a math

- Why non QCD-like?
- Why not?

Eoin Kerrane

University of Edinburgh

Image: A math a math

- Why non QCD-like?
- Why not?
- Several BSM applications relevant to LHC:

Eoin Kerrane

University of Edinburgh

Image: A math a math

- Why non QCD-like?
- ► Why not?
- Several BSM applications relevant to LHC:
 - Technicolor

Eoin Kerrane

- Why non QCD-like?
- Why not?
- Several BSM applications relevant to LHC:
 - Technicolor
 - Unparticles

Eoin Kerrane

Image: A mathematical states and a mathem

Beta function

▶ SU(N) Yang-Mills theory, N_f fermions in representation R

$$\beta(g) = -\beta_0(N, N_f, R) \frac{g^3}{16\pi^2} - \beta_1(N, N_f, R) \frac{g^5}{(16\pi^2)^2}$$

Image: A math a math

Beta function

▶ SU(N) Yang-Mills theory, N_f fermions in representation R

$$\beta(g) = -\beta_0(N, N_f, R) \frac{g^3}{16\pi^2} - \beta_1(N, N_f, R) \frac{g^5}{(16\pi^2)^2}$$

•
$$\beta_{0,1} > 0$$
 for N_f small

University of Edinburgh

Image: A math a math

Beta function

▶ SU(N) Yang-Mills theory, N_f fermions in representation R

$$\beta(g) = -\beta_0(N, N_f, R) \frac{g^3}{16\pi^2} - \beta_1(N, N_f, R) \frac{g^5}{(16\pi^2)^2}$$

*β*_{0,1} > 0 for *N_f* small
 For *QCD*

$$egin{array}{lll} eta_1 = 0 & N_f \sim 8 \ eta_0 = 0 & N_f \sim 16 \end{array}$$

Eoin Kerrane

The Spectra of Yang-Mills Gauge Theories with novel, non QCD-like dynamics

University of Edinburgh

・ロト ・日子・ ・ ヨト

Beta function

University of Edinburgh

A B >
 A B >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Beta function

Eoin Kerrane

University of Edinburgh

A B >
 A B >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Beta function

University of Edinburgh

Image: A matrix

Beta function

Eoin Kerrane

University of Edinburgh

Non-trivial IR fixed-point first investigated in 1982 [BZ82]

Eoin Kerrane

University of Edinburgh

Image: A image: A

- ► Non-trivial IR fixed-point first investigated in 1982 [BZ82]
- ▶ Began with observation that β₀ < 0 for N_f > N^{*} (N^{*} ~ 16) for QCD

Eoin Kerrane

University of Edinburgh

Image: A math a math

Bank-Zaks

- Non-trivial IR fixed-point first investigated in 1982 [BZ82]
- ▶ Began with observation that β₀ < 0 for N_f > N^{*} (N^{*} ~ 16) for QCD
- Then noticed:
 - that $b_1 < 0$ for $N_f > N'_f < N^*$

Bank-Zaks

- Non-trivial IR fixed-point first investigated in 1982 [BZ82]
- ▶ Began with observation that β₀ < 0 for N_f > N^{*} (N^{*} ~ 16) for QCD
- Then noticed:
 - that $b_1 < 0$ for $N_f > N'_f < N^*$
 - that form of β function is scheme dependent.

- Non-trivial IR fixed-point first investigated in 1982 [BZ82]
- ▶ Began with observation that β₀ < 0 for N_f > N^{*} (N^{*} ~ 16) for QCD
- Then noticed:
 - that $b_1 < 0$ for $N_f > N'_f < N^*$
 - that form of β function is scheme dependent.
- ▶ Built an expansion in $(N_f N^*)$ of RG quantities for $N_f \leq N^*$, where there is a weakly coupled IR fixed point

- Non-trivial IR fixed-point first investigated in 1982 [BZ82]
- ▶ Began with observation that β₀ < 0 for N_f > N^{*} (N^{*} ~ 16) for QCD
- Then noticed:
 - that $b_1 < 0$ for $N_f > N'_f < N^*$
 - that form of β function is scheme dependent.
- ▶ Built an expansion in $(N_f N^*)$ of RG quantities for $N_f \leq N^*$, where there is a weakly coupled IR fixed point
- Posited phase diagram of such a theory

- Non-trivial IR fixed-point first investigated in 1982 [BZ82]
- ▶ Began with observation that β₀ < 0 for N_f > N^{*} (N^{*} ~ 16) for QCD
- Then noticed:
 - that $b_1 < 0$ for $N_f > N'_f < N^*$
 - that form of β function is scheme dependent.
- ▶ Built an expansion in $(N_f N^*)$ of RG quantities for $N_f \leq N^*$, where there is a weakly coupled IR fixed point
- Posited phase diagram of such a theory
- Concluded that theory with IR fixed point
 - is scale invariant

- Non-trivial IR fixed-point first investigated in 1982 [BZ82]
- ▶ Began with observation that β₀ < 0 for N_f > N^{*} (N^{*} ~ 16) for QCD
- Then noticed:
 - that $b_1 < 0$ for $N_f > N'_f < N^*$
 - that form of β function is scheme dependent.
- ▶ Built an expansion in $(N_f N^*)$ of RG quantities for $N_f \leq N^*$, where there is a weakly coupled IR fixed point
- Posited phase diagram of such a theory
- Concluded that theory with IR fixed point
 - is scale invariant
 - does not admit a particle interpretation

Unparticles [Geo07]

 Proposed possibility of existence of BZ sector with IR fixed point, coupled to SM via particles of mass M_U

Image: A matrix

Unparticles [Geo07]

- Proposed possibility of existence of BZ sector with IR fixed point, coupled to SM via particles of mass M_U
- Below $\Lambda_{\mathcal{U}}$ scale invariance emerges in \mathcal{BZ} sector

University of Edinburgh

Unparticles [Geo07]

- Proposed possibility of existence of BZ sector with IR fixed point, coupled to SM via particles of mass M_U
- Below $\Lambda_{\mathcal{U}}$ scale invariance emerges in \mathcal{BZ} sector
- Analyses matrix elements of \mathcal{BZ} operators

< □ > < ---->

Unparticles [Geo07]

- Proposed possibility of existence of BZ sector with IR fixed point, coupled to SM via particles of mass M_U
- Below $\Lambda_{\mathcal{U}}$ scale invariance emerges in \mathcal{BZ} sector
- Analyses matrix elements of \mathcal{BZ} operators
- ► Concludes that "unparticle stuff with scale dimension d_U looks like a non-integral number d_U of invisible particles"

Suggested [LO06, Lut09] as alternative to Walking Technicolor

Eoin Kerrane

University of Edinburgh

Image: A mathematic states and a mathematic states

- Suggested [LO06, Lut09] as alternative to Walking Technicolor
- Again, proposes \mathcal{BZ} sector with IR fixed point

Conformal Technicolor

- Suggested [LO06, Lut09] as alternative to Walking Technicolor
- Again, proposes \mathcal{BZ} sector with IR fixed point
- 2 massless fermions forming minimal technicor sector

University of Edinburgh

< □ > < ---->

- Suggested [LO06, Lut09] as alternative to Walking Technicolor
- Again, proposes \mathcal{BZ} sector with IR fixed point
- 2 massless fermions forming minimal technicor sector
- ▶ $N_f 2$ electroweak singlet fermions , charged under \mathcal{BZ} with explicit mass terms

► Theory is in conformal phase above *TeV* scale

Eoin Kerrane

University of Edinburgh

- Theory is in conformal phase above TeV scale
- Fermion masses cause flow away from fixed point below TeV

University of Edinburgh

Image: A image: A

Conformal Technicolor

- Theory is in conformal phase above TeV scale
- Fermion masses cause flow away from fixed point below TeV
- Scale-invariance broken, theory becomes confining, breaking EW

< □ > < ---->

- Theory is in conformal phase above TeV scale
- Fermion masses cause flow away from fixed point below TeV
- Scale-invariance broken, theory becomes confining, breaking EW
- Proximity to IR fixed point ensures condensate has large anomalous dimension

- Theory is in conformal phase above TeV scale
- Fermion masses cause flow away from fixed point below TeV
- Scale-invariance broken, theory becomes confining, breaking EW
- Proximity to IR fixed point ensures condensate has large anomalous dimension
- Fermion masses are enhanced, as in Walking Technicolor

- Theory is in conformal phase above TeV scale
- Fermion masses cause flow away from fixed point below TeV
- Scale-invariance broken, theory becomes confining, breaking EW
- Proximity to IR fixed point ensures condensate has large anomalous dimension
- Fermion masses are enhanced, as in Walking Technicolor
- Argued in [San08] that CT is equivalent to Partially Gauged Technicolor [DST06], but needs new mass scale for EWSB

Outline

Introduction

Features

Results

Eoin Kerrane

University of Edinburgh

3

Image: A math a math

Critical Line

 Yang-Mills spectra measured non-perturbatively in a lattice formulation

University of Edinburgh

A B > 4
 B > 4
 B

Critical Line

 Yang-Mills spectra measured non-perturbatively in a lattice formulation, Wilson fermions

Critical Line

- Yang-Mills spectra measured non-perturbatively in a lattice formulation, Wilson fermions
- Chiral symmetry broken $m_0 \neq m_q$

$$\kappa = \frac{1}{8 + 2am_0} \quad \beta = \frac{4}{g_0^2}$$

University of Edinburgh

Critical Line

- Yang-Mills spectra measured non-perturbatively in a lattice formulation, Wilson fermions
- Chiral symmetry broken $m_0 \neq m_q$

$$\kappa = \frac{1}{8 + 2am_0} \quad \beta = \frac{4}{g_0^2}$$

▶ Chirally symmetric phase has $m_{\pi,\rho,...} \rightarrow 0$ as $m_q \rightarrow 0$

University of Edinburgh

Image: A math a math

Eoin Kerrane

Critical Line

- Yang-Mills spectra measured non-perturbatively in a lattice formulation, Wilson fermions
- Chiral symmetry broken $m_0 \neq m_q$

$$\kappa = \frac{1}{8 + 2am_0} \quad \beta = \frac{4}{g_0^2}$$

- Chirally symmetric phase has $m_{\pi,\rho,...}
 ightarrow 0$ as $m_q
 ightarrow 0$
- Chirally broken phase has $m_\pi \sim \sqrt{m_q}$, $m_{
 ho,...}
 eq 0$ as $m_q
 ightarrow 0$

University of Edinburgh

Eoin Kerrane

Outline

Introduction

Features

Results

Eoin Kerrane

University of Edinburgh

Image: A math a math

[CS07]

Figure: Fundamental quarks

Figure: Adjoint quarks

Image: A image: A

Eoin Kerrane

The Spectra of Yang-Mills Gauge Theories with novel, non QCD-like dynamics

[DDPP08]

Eoin Kerrane

The Spectra of Yang-Mills Gauge Theories with novel, non QCD-like dynamics

[DDPP08]

Eoin Kerrane

The Spectra of Yang-Mills Gauge Theories with novel, non QCD-like dynamics

[HRRT09]

Figure: Phase diagram of SU(2) adjoint theory

Image: A matrix

[HRRT09]

Eoin Kerrane

The Spectra of Yang-Mills Gauge Theories with novel, non QCD-like dynamics

[HRRT09]

Tom Banks and A. Zaks.

On the Phase Structure of Vector-Like Gauge Theories with Massless Fermions. *Nucl. Phys.*, B196:189, 1982.

- Simon Catterall and Francesco Sannino. Minimal walking on the lattice. *Phys. Rev.*, D76:034504, 2007.
- Luigi Del Debbio, Agostino Patella, and Claudio Pica.
 Higher representations on the lattice: numerical simulations.
 SU(2) with adjoint fermions.
 2008.
- Dennis D. Dietrich, Francesco Sannino, and Kimmo Tuominen.

Light composite Higgs and precision electroweak measurements on the Z resonance: An update.

Eoin Kerrane

Phys. Rev., D73:037701, 2006.

- Howard Georgi. Unparticle Physics. Phys. Rev. Lett., 98:221601, 2007.
- Ari J. Hietanen, Jarno Rantaharju, Kari Rummukainen, and Kimmo Tuominen.
 - Spectrum of SU(2) lattice gauge theory with two adjoint Dirac flavours.

JHEP, 05:025, 2009.

Markus A. Luty and Takemichi Okui. Conformal technicolor. *JHEP*, 09:070, 2006.

Markus A. Luty.

Strong Conformal Dynamics at the LHC and on the Lattice. *JHEP*, 04:050, 2009.

Eoin Kerrane

Francesco Sannino.

(Near) Conformal Technicolor: What is really new? 2008.

University of Edinburgh

Image: A math a math