Preserving Symmetries in Seiberg Dualities HEP Young Theorists' Forum 2009

James Barnard

Department of Mathematics, Durham University

April 8th 2009

- 2 Seiberg duality
- 3 The KSS model
- 4 Preserving symmetries

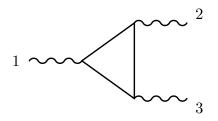
Vague motivation

- Seiberg duality¹ in $\mathcal{N} = 1$ SUSY gives us a different way of looking at supersymmetric gauge theories.
- We believe it will help in understanding many aspects of BSM physics such as gauge unification, proton decay and dynamical SUSY breaking.
- Problem: currently, dualities only exist for theories with highly constrained matter content and unrealistic superpotentials.
- Our goal is to find a dual theory to a more realistic GUT, like a supersymmetric ${
 m SU}(5)$ model.

¹For a review: K. Intriligator, N. Seiberg - arXiv:hep-th/9509066

Seiberg duality in a nutshell

Original theory - SQCD with N colours and F_Q flavours

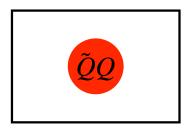

	SU(N)	$\mathrm{SU}(F_Q)_L$	$\mathrm{SU}(F_Q)_R$
Q	Ν	$\mathbf{F}_{\mathbf{Q}}$	1
Q	$\overline{\mathbf{N}}$	1	$\mathbf{F}_{\mathbf{Q}}$

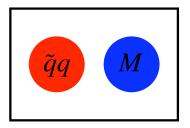
Dual theory - SQCD+M with $n = F_Q - N$ colours and F_Q flavours

	SU(n)	$\mathrm{SU}(F_Q)_L$	$\mathrm{SU}(F_Q)_R$
q	n	$\overline{\mathbf{F}_{\mathbf{Q}}}$	1
q	$\overline{\mathbf{n}}$	1	$\overline{\mathbf{F}_{\mathbf{Q}}}$
Μ	1	$\mathbf{F}_{\mathbf{Q}}$	$\mathbf{F}_{\mathbf{Q}}$

Tests of the duality

- The global symmetries of both theories are the same.
- The classical moduli spaces of both theories are the same (i.e. the mesons and baryons match).
- The duality is preserved under deformations, e.g. quark mass terms.
- Highly non-trivial 't Hooft anomaly matching conditions are satisfied for non-anomalous global symmetries, especially those involving the *R*-symmetry.

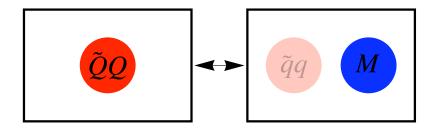



The KSS model

Preserving symmetrie

Summary

Mesons and superpotential


Original theory - SU(N)

• F_Q^2 mesons $\tilde{Q}Q$

Dual theory - $SU(F_Q - N)$

- F_Q^2 composite mesons $\tilde{q}q$
- F_Q^2 elementary mesons M

Mesons and superpotential

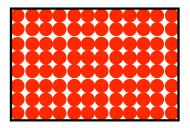
Original theory - SU(N)

• F_Q^2 mesons $\tilde{Q}Q$

Dual theory - $SU(F_Q - N)$

- $W_{\rm dual} = M \tilde{q} q$
- *F*-terms give $\tilde{q}q = 0$
- F_Q^2 elementary mesons M

Adding more matter: the KSS model

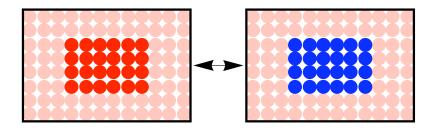

- To find a dual GUT, we need to be able to find dualities for theories with adjoint and/or antisymmetric representations of the gauge group.
- Consider adding an adjoint X to the original theory². The mesons are now

$$M_j = \tilde{Q} X^j Q$$

for **any** positive integer j.

²D. Kutasov, A. Schwimmer, N. Seiberg - arXiv:hep-th/9510222

The KSS model


Original theory - SU(N)

• ∞ mesons $\tilde{Q}X^{j}Q$

Dual theory - SU(!)

• Argh!

The KSS model

Original theory - SU(N)

- $W_{\text{orig}} = X^{k+1}$
- *F*-terms give $X^k = 0$
- kF_Q^2 mesons $M_j = \tilde{Q}X^jQ$

•
$$j = 0, ..., k - 1$$

Dual theory - $SU(kF_Q - N)$

- $W_{\text{dual}} = x^{k+1} + \sum_j M_j \tilde{q} x^{k-1-j} q$
- *F*-terms give $x^k = \tilde{q}x^jq = 0$
- kF_Q^2 elementary mesons M_j

•
$$j = 0, \ldots, k - 1$$

Preserving symmetries

- Adding a superpotential to the original theory is often necessary, but reduces the number of global symmetries.
- If there are too few global symmetries we cannot test the duality properly.
- In particular, it seems very important for the theory to retain an *R*-symmetry to ensure non-trivial 't Hooft anomaly matching conditions.
- By adding gauge singlets to the superpotential we can generally retain an *R*-symmetry.

Example: the deformed KSS model

- Consider the model just discussed: SQCD with N colours, F_Q flavours and an extra adjoint field X.
- This model required superpotential W_{orig} = X^{k+1} for a duality to make sense.
- Now deform the superpotential with an extra term

$$W_{\text{orig}} = s_0 X^{k+1} + s_l X^{k+1-l}$$
 with $1 \le l \le k-1$

(this theory now exhibits GUT-like behaviour).

- *R*-symmetries require *R*(*W*) = 2. Hence the deformed KSS model has no *R*-symmetry.
- The dual theory still exists and is of the same form, but with a more complicated superpotential.

The *R*-symmetric deformed KSS model

 \bullet A non-anomalous $R\mbox{-symmetry}$ can be restored by adding a gauge singlet ϕ and setting

$$W_{\rm orig} = \phi^{\rho_0} X^{k+1} + \phi^{\rho_l} X^{k+1-l}$$

This gives

$$R(X) = \frac{2(\rho_l - \rho_0)}{\rho_l(k+1) - \rho_0(k+1-l)}, \quad R(\phi) = \frac{l}{\rho_l - \rho_0}R(X)$$

and therefore R(W) = 2.

• One can think of this process as elevating all coupling constants in the superpotential to fields $s \longrightarrow \phi^{\rho}$.

A meson ambiguity

• Having introduced a new, gauge invariant field the most general meson is now

$$M^{(lpha)}_j = ilde{Q}(\phi^lpha X)^j Q$$
 with $j=0,\ldots,k-1$

for arbitrary α .

 Different values of α give different *R*-charges to the mesons, but these *R*-charges appear in the 't Hooft anomaly matching conditions so it's important to get them right!

Fixing the meson ambiguity

• In the undeformed dual theory, the elementary mesons project out the composite mesons with the terms

$$W_{
m dual} \supset \sum_j M_j \tilde{q} x^{k-1-j} q$$

- We propose that the singlets are shared evenly among the original and dual mesons, i.e. we attach the same powers of ϕ to adjoints on both sides of the duality.
- The meson terms in the deformed dual theory now look like

$$\sum_{j} M_{j}^{(\alpha)} \left[\tilde{q}(\phi^{\alpha} x)^{k-1-j} q \right] = \sum_{j} \left[\tilde{Q}(\phi^{\alpha} X)^{j} Q \right] \left[\tilde{q}(\phi^{\alpha} x)^{k-1-j} q \right]$$

• Solving $R(W_{dual}) = 2$ for α unambiguously fixes its value and therefore the definition of the mesons.

- Attaching ϕ^{α} to all adjoints also results in the exact powers required to match baryons between the two theories.
- This is an independent test and follows from known results by considering ϕ as an elevated coupling constant.
- Demanding that the $U(1)_R^3$ 't Hooft anomalies match restricts the choices for the powers of ϕ appearing in the superpotential.

ρ_0	0	any	any
ρ_I	any	$\left(1-\frac{l}{k-1}\right) ho_0$	$ ho_0$

Other applications

- This technique can also be used to find new dualities with more general matter content and realistic superpotentials.³
- First, one writes down the superpotential required in the original theory to ensure that the number of mesons is well defined. This often breaks any *R*-symmetries.
- An *R*-symmetry is then restored using this technique. Hence a duality can be found and rigourously tested.
- We have demonstrated the idea for SQCD with an arbitrary number of adjoints and SQCD with three generations of antisymmetric tensor an important step towards a dual of an SU(5) GUT.

³S. Abel, JB - arXiv:0903.1313[hep-th]

- Summary
 - Seiberg duality may have many phenomenological applications, but to exploit them we need dualities involving realistic theories.
 - Adding more complicated matter representations to dualities often requires a non-zero superpotential in the original theory.
 - If this superpotential breaks too many global symmetries (particularly *R*-symmetries) a duality cannot be rigourously tested.
 - Adding gauge singlets (or equivalently elevating coupling constants to fields) can address this problem.
 - However, one must be careful to include the gauge singlets properly when defining the mesons of the theory.
 - This technique can be further expanded to allow us to find and test new dualities with semi-realistic matter content.