Walking Technicolor on the Lattice

Liam Keegan

May 2009

Edinburgh Supervisor: Luigi Del Debbio

イロン イヨン イヨン イヨン

Introduction

Technicolor : Problems and solutions Lattice : Measuring scale-dependence Results : (Very) preliminary

3

Introduction

Technicolor : Problems and solutions Lattice : Measuring scale-dependence Results : (Very) preliminary

イロン イヨン イヨン イヨン

3

Introduction

Technicolor : Problems and solutions

Lattice : Measuring scale-dependence Results : (Very) preliminary

・ロト ・回ト ・ヨト ・ヨト

Introduction

Technicolor : Problems and solutions Lattice : Measuring scale-dependence Results : (Very) preliminary

・ロト ・回ト ・ヨト ・ヨト

3

Introduction

Technicolor : Problems and solutions Lattice : Measuring scale-dependence Results : (Very) preliminary

・ロト ・回ト ・ヨト ・ヨト

3

What is Technicolor? Problems Solution: Walking Technicolor Phase Diagram

Technicolor replaces the Higgs mechanism with a strongly coupled gauge theory of techni-quarks. There are two scales involved:

\TC : Techni-quark condensate breaks the electroweak sector

イロン イヨン イヨン イヨン

\ETC : Techni-quarks interact with SM quarks to give them mass

What is Technicolor? Problems Solution: Walking Technicolor Phase Diagram

- Technicolor replaces the Higgs mechanism with a strongly coupled gauge theory of techni-quarks. There are two scales involved:
- $\Lambda_{\mathcal{TC}}$: Techni-quark condensate breaks the electroweak sector

イロン イヨン イヨン イヨン

\ETC : Techni-quarks interact with SM quarks to give them mass

What is Technicolor? Problems Solution: Walking Technicolor Phase Diagram

Technicolor replaces the Higgs mechanism with a strongly coupled gauge theory of techni-quarks. There are two scales involved:

 $\Lambda_{\mathcal{TC}}$: Techni-quark condensate breaks the electroweak sector

イロト イヨト イヨト イヨト

 Λ_{ETC} : Techni-quarks interact with SM quarks to give them mass

What is Technicolor? **Problems** Solution: Walking Technicolor Phase Diagram

Technicolor Problems

If we assume the strong coupling dynamics are a scaled up version of QCD, this leads to problems:

Flavour Changing Neutral Currents

- ► Need Λ_{ETC} to be big Quark Masses
- Need Λ_{ETC} to be small
 EW Precision Data

イロン イヨン イヨン イヨン

What is Technicolor? **Problems** Solution: Walking Technicolor Phase Diagram

Technicolor Problems

If we assume the strong coupling dynamics are a scaled up version of QCD, this leads to problems:

- Flavour Changing Neutral Currents
- Need A_{ETC} to be big
 Quark Masses
- ► Need Λ_{ETC} to be small EW Precision Data

イロン イヨン イヨン イヨン

What is Technicolor? **Problems** Solution: Walking Technicolor Phase Diagram

Technicolor Problems

If we assume the strong coupling dynamics are a scaled up version of QCD, this leads to problems:

- Flavour Changing Neutral Currents
- Need A_{ETC} to be big Quark Masses
- Need Λ_{ETC} to be small

イロン イヨン イヨン イヨン

EW Precision Data

What is Technicolor? **Problems** Solution: Walking Technicolor Phase Diagram

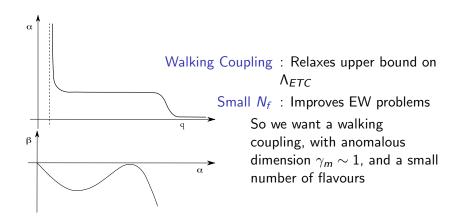
Technicolor Problems

If we assume the strong coupling dynamics are a scaled up version of QCD, this leads to problems:

- Flavour Changing Neutral Currents
- Need A_{ETC} to be big Quark Masses
- Need Λ_{ETC} to be small
 EW Precision Data

イロト イヨト イヨト イヨト

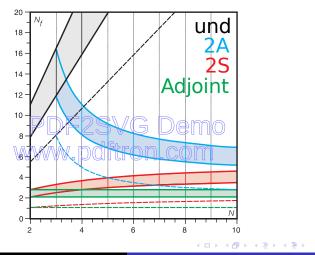
Solution


What is Technicolor? Problems Solution: Walking Technicolor Phase Diagram

 $\begin{array}{l} \mbox{Walking Coupling} : \mbox{Relaxes upper bound on} \\ \Lambda_{ETC} \\ \mbox{Small N_f} : \mbox{Improves EW problems} \\ \mbox{So we want a walking} \\ \mbox{coupling, with anomalous} \\ \mbox{dimension $\gamma_m \sim 1$, and a small} \\ \mbox{number of flavours} \end{array}$

イロン イヨン イヨン イヨン

What is Technicolor? Problems Solution: Walking Technicolor Phase Diagram


Solution

<ロ> <同> <同> <同> < 同>

_∢ ≣ ≯

What is Technicolor? Problems Solution: Walking Technicolor Phase Diagram

Liam Keegan Walking Technicolor on the Lattice

4

Goal SF Scheme Changing the Scale Step Scaling

Investigate Minimal Walking Technicolor

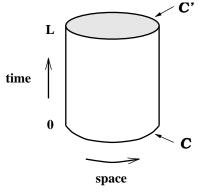
- This a gauge theory with two flavours of Techni-fermions which transform under the SU(2) Adjoint representation of the gauge group.
- Want to measure the anomalous dimension γ_m, and the running of the coupling g²(μ) and mass m(μ) over a range of scales μ.

Goal SF Scheme Changing the Scale Step Scaling

- Investigate Minimal Walking Technicolor
- This a gauge theory with two flavours of Techni-fermions which transform under the SU(2) Adjoint representation of the gauge group.
- ▶ Want to measure the anomalous dimension γ_m , and the running of the coupling $\overline{g}^2(\mu)$ and mass $\overline{m}(\mu)$ over a range of scales μ .

・ロン ・回 と ・ ヨ と ・ ヨ と

Goal SF Scheme Changing the Scale Step Scaling



- Investigate Minimal Walking Technicolor
- This a gauge theory with two flavours of Techni-fermions which transform under the SU(2) Adjoint representation of the gauge group.
- Want to measure the anomalous dimension γ_m , and the running of the coupling $\overline{g}^2(\mu)$ and mass $\overline{m}(\mu)$ over a range of scales μ .

・ロン ・回 と ・ ヨ と ・ ヨ と

Goal SF Scheme Changing the Scale Step Scaling

Schrodinger Functional

(LxLxL box with periodic b.c.)

- Use Schrodinger
 Functional a finite
 volume renormalisation
 scheme
- ► Only one scale, *L*, so coupling runs with it: <u>g</u>²(*L*).

- 4 回 2 - 4 □ 2 - 4 □

Goal SF Scheme Changing the Scale Step Scaling

Changing the Scale

We can change two things:

- ▶ *L*/*a*, the number of points on one side of our lattice
- a, the physical length between these points

Ideally would pick some initial *a* and *L*/*a*, and measure observables at the scale *L*, then double the number of points and measure at the scale 2*L*, double again for 4*L*, etc. The energy scale $\mu \propto 1/L$

▶ But computing time scales as ~ (L/a)⁵, so this is only feasible for one or two steps.

イロン イヨン イヨン イヨン

Goal SF Scheme Changing the Scale Step Scaling

Changing the Scale

We can change two things:

- L/a, the number of points on one side of our lattice
- ► a, the physical length between these points

Ideally would pick some initial *a* and *L/a*, and measure observables at the scale *L*, then double the number of points and measure at the scale 2*L*, double again for 4*L*, etc. The energy scale $\mu \propto 1/L$

► But computing time scales as ~ (L/a)⁵, so this is only feasible for one or two steps.

イロン 不同と 不同と 不同と

Goal SF Scheme Changing the Scale Step Scaling

Changing the Scale

We can change two things:

- L/a, the number of points on one side of our lattice
- ► a, the physical length between these points

Ideally would pick some initial *a* and L/a, and measure observables at the scale *L*, then double the number of points and measure at the scale 2*L*, double again for 4*L*, etc. The energy scale $\mu \propto 1/L$

▶ But computing time scales as ~ (L/a)⁵, so this is only feasible for one or two steps.

Goal SF Scheme Changing the Scale Step Scaling

Changing the Scale

We can change two things:

- L/a, the number of points on one side of our lattice
- ► a, the physical length between these points

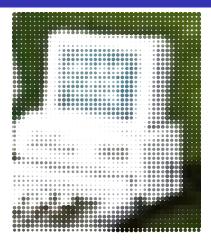
Ideally would pick some initial *a* and *L/a*, and measure observables at the scale *L*, then double the number of points and measure at the scale 2*L*, double again for 4*L*, etc. The energy scale $\mu \propto 1/L$

▶ But computing time scales as ~ (L/a)⁵, so this is only feasible for one or two steps.

Goal SF Scheme Changing the Scale Step Scaling

Changing the Scale

We can change two things:


- L/a, the number of points on one side of our lattice
- ► a, the physical length between these points

Ideally would pick some initial *a* and *L/a*, and measure observables at the scale *L*, then double the number of points and measure at the scale 2*L*, double again for 4*L*, etc. The energy scale $\mu \propto 1/L$

But computing time scales as ~ (L/a)⁵, so this is only feasible for one or two steps.

Goal SF Scheme Changing the Scale Step Scaling

A single step

- We pick a resolution (L/a = 10), and lattice spacing (a), and measure our observables at this scale L.
- Now we keep the same a but double the number of points to 20, and measure the observables at the scale 2L

イロン イヨン イヨン イヨン

Goal SF Scheme Changing the Scale Step Scaling

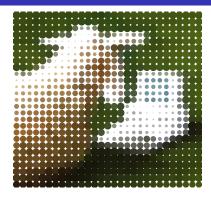
A single step

- We pick a resolution (L/a = 10), and lattice spacing (a), and measure our observables at this scale L.
- Now we keep the same a but double the number of points to 20, and measure the observables at the scale 2L

イロト イヨト イヨト イヨト

Goal SF Scheme Changing the Scale Step Scaling

The Clever Bit



- We adjust a so that our lattice with 10 points is now at the scale 2L. Essentially we are looking at the same scale, but at half the resolution, or number of points.
- Now we can go from 10 to 20 points again, and be at the scale 4L

・ロト ・回ト ・ヨト ・ヨト ・ ヨ

Goal SF Scheme Changing the Scale Step Scaling

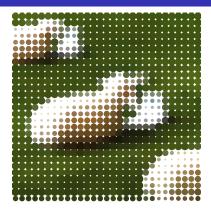
The Clever Bit

- We adjust a so that our lattice with 10 points is now at the scale 2L.
 Essentially we are looking at the same scale, but at half the resolution, or number of points.
- Now we can go from 10 to 20 points again, and be at the scale 4L

イロト イヨト イヨト イヨト

Goal SF Scheme Changing the Scale Step Scaling

The Clever Bit

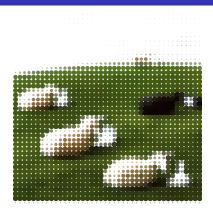


- We adjust a so that our lattice with 10 points is now at the scale 2L.
 Essentially we are looking at the same scale, but at half the resolution, or number of points.
- Now we can go from 10 to 20 points again, and be at the scale 4L

イロト イヨト イヨト イヨト

Goal SF Scheme Changing the Scale Step Scaling

The Clever Bit



- We adjust a so that our lattice with 10 points is now at the scale 2L. Essentially we are looking at the same scale, but at half the resolution, or number of points.
- Now we can go from 10 to 20 points again, and be at the scale 4L

イロト イヨト イヨト イヨト

Goal SF Scheme Changing the Scale Step Scaling

The Clever Bit

- We adjust a so that our lattice with 10 points is now at the scale 2L.
 Essentially we are looking at the same scale, but at half the resolution, or number of points.
- Now we can go from 10 to 20 points again, and be at the scale 4L

イロト イヨト イヨト イヨト

Goal SF Scheme Changing the Scale Step Scaling

The Clever Bit

- We adjust a so that our lattice with 10 points is now at the scale 2L. Essentially we are looking at the same scale, but at half the resolution, or number of points.
- Now we can go from 10 to 20 points again, and be at the scale 4L

Goal SF Scheme Changing the Scale Step Scaling

Continuum Extrapolation

- Notice the resolution wasn't very good, and got worse at each step
- In practice at each scale L we choose several resolutions L/a, and extrapolate to the continuum a → 0.

・ロン ・回 と ・ ヨ と ・ ヨ と

Goal SF Scheme Changing the Scale Step Scaling

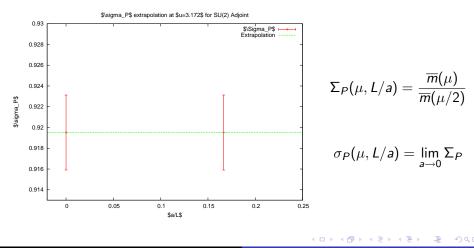
Continuum Extrapolation

- Notice the resolution wasn't very good, and got worse at each step
- In practice at each scale L we choose several resolutions L/a, and extrapolate to the continuum a → 0.

イロト イヨト イヨト イヨト

Goal SF Scheme Changing the Scale Step Scaling

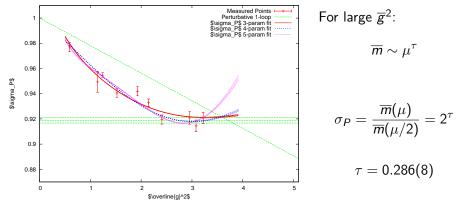
Continuum Extrapolation



- Notice the resolution wasn't very good, and got worse at each step
- In practice at each scale L we choose several resolutions L/a, and extrapolate to the continuum a → 0.

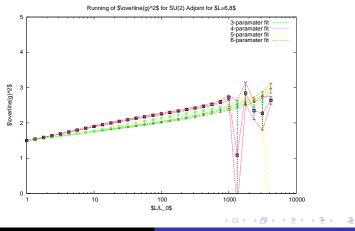
・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Continuum Extrapolation Anomalous Dimension I Running Coupling Running Mass Anomalous Dimension II


Continuum Extrapolation of σ_P

Continuum Extrapolation Anomalous Dimension I Running Coupling Running Mass Anomalous Dimension II

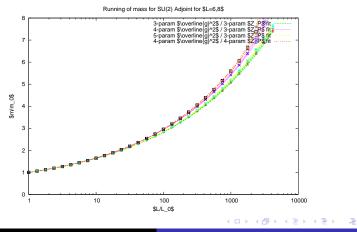
Anomalous Dimension



イロン イヨン イヨン イヨン

2

Continuum Extrapolation Anomalous Dimension I Running Coupling Running Mass Anomalous Dimension II


Running Coupling

Liam Keegan Walking Technicolor on the Lattice

Continuum Extrapolation Anomalous Dimension I Running Coupling Running Mass Anomalous Dimension II

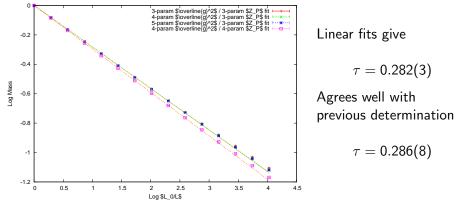
Running Mass

Liam Keegan Walking Technicolor on the Lattice

Continuum Extrapolation Anomalous Dimension I Running Coupling Running Mass Anomalous Dimension II

Anomalous Dimension

In the IR limit, if the renormalised mass does indeed have the form $m \sim \mu^{\tau}$, then a on a log-log plot of *m* against μ , the points should form a straight line, the gradient of the line being the anomalous dimension:


 $\log m = -\tau \log \mu + const.$

・ロト ・回ト ・ヨト ・ヨト

Continuum Extrapolation Anomalous Dimension I Running Coupling Running Mass Anomalous Dimension II

Anomalous Dimension

Log-log plot of mass vs energy for SU(2) Adjoint for \$L=6\rightarrow 8\$, starting at the largest measured couplir

・ロト ・回ト ・ヨト

< E

Conclusion

Conclusion

- Coupling looks like it's walking over the range of scales looked at so far.
- Anomalous mass dimension is relatively large, or at least not small: $\tau \sim$ 0.3.
- But no continuum extrapolation yet, and small lattices, so this will have large discretisation errors.
- Currently simulating on larger lattices which will help with this.

イロン 不同と 不同と 不同と

Conclusion

- Coupling looks like it's walking over the range of scales looked at so far.
- Anomalous mass dimension is relatively large, or at least not small: \(\tau\) ~ 0.3.
- But no continuum extrapolation yet, and small lattices, so this will have large discretisation errors.
- Currently simulating on larger lattices which will help with this.

Conclusion

- Coupling looks like it's walking over the range of scales looked at so far.
- \blacktriangleright Anomalous mass dimension is relatively large, or at least not small: $\tau\sim$ 0.3.
- But no continuum extrapolation yet, and small lattices, so this will have large discretisation errors.
- Currently simulating on larger lattices which will help with this.

Conclusion

- Coupling looks like it's walking over the range of scales looked at so far.
- Anomalous mass dimension is relatively large, or at least not small: \(\tau\) ~ 0.3.
- But no continuum extrapolation yet, and small lattices, so this will have large discretisation errors.
- Currently simulating on larger lattices which will help with this.

Conclusion

- Coupling looks like it's walking over the range of scales looked at so far.
- Anomalous mass dimension is relatively large, or at least not small: \(\tau\) ~ 0.3.
- But no continuum extrapolation yet, and small lattices, so this will have large discretisation errors.
- Currently simulating on larger lattices which will help with this.

Conclusion

