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Motivation

LO accuracy is not enough
for many processes at the LHC the experimental precision
will be such that at least NLO precision is required in
predictive simulations

Analytic NLO (and even NNLO) calculations have been
performed for processes which will be important at the LHC
However, analytic calculations are not sufficient

complicated phase space means all but simplest
observables impossible to calculate analytically
want to combine NLO matrix element predictions
consistently with parton shower and hadronisation to
produce hadronic level predictions

Therefore, NLO matrix elements must be implemented in
Monte Carlo generators
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The importance of neutral current Drell-Yan

Parton distribution functions
low mass Z-production sensitive to PDFs at small x

Detector calibration
comparison of MZ and ΓZ with LEP measurements

Measurement of effective weak mixing angle
using forward-backward asymmetry near the Z pole

Extraction of MW

from the ratio of W → lν and Z → l+l− cross sections

New physics searches
extra neutral gauge bosons, effects of large extra
dimensions, composite quarks and leptons
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Figure: Relative corrections to total cross sections for uū → e+e−

and dd̄ → e+e−

Baur et al. hep-ph/0108274
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QCD NLO Cross Section

σNLO =

∫

m
dσLO +

∫

m
dσV +

∫

m+1
dσR

Difficulties in implementing NLO in Monte Carlo

Calculation of virtual contribution
a lot of progress has been made here recently
general purpose automated 1-loop programs on the horizon

Treatment of soft and collinear singularities
Matching NLO matrix element with Parton Shower

POWHEG
MC@NLO
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Soft and collinear singularities

σNLO =

∫

m
dσLO +

∫

m
dσV +

∫

m+1
dσR

Virtual and real contributions separately divergent

Infinities cancel when combined

Integrated over different phase spaces before combination

⇒ Completely unsuitable for numerical integration
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Phase space slicing vs subtraction methods

Two main techniques to overcome this problem:
Phase space slicing

introduce phase space cut δ

if δ is small enough, result should be independent of it
a rather crude, and increasingly unpopular method

Subtraction methods
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Subtraction Term

A subtraction term is introduced to cancel divergences:
∫

m
dσV +

∫

m+1
dσR =

∫

m

[

dσV +

∫

1
dσA

]

+

∫

m+1
[dσR − dσA] .

This simple step solves the numerical problems, provided that
the subtraction term

exactly matches the pointwise singular behaviour of the
real matrix element,

contains no other divergences and is otherwise convenient
for Monte Carlo integration, and

is of a form such that it is possible to integrate it analytically
over the one-particle phase space in d-dimensions.
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Sounds perfect... but is it possible to find such a term?
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Process-dependent subtraction terms

Introduced by Ellis, Ross and Terrano in 1981 for the case
of e+ + e− → 3 jets

Subsequently applied to other processes, but method must
be adapted to each process

Nucl.Phys.B178:421,1981
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Catani-Seymour Dipole Subtraction

Completely general version of the subtraction method.

Set of universal counter terms which can be used for any
NLO QCD process.

Relies on the factorisation of the soft and collinear
divergences.

hep-ph/9605323

J. Archibald Monte Carlo at NLO



Motivation
Implementation, and potential problems

Subtraction method
Summary

Factorisation of soft and collinear divergences

Consider an m-parton leading order matrix element

Choose two external partons and label them i and k

Consider parton i emitting a soft or collinear parton labeled
j

Reshuffle the momenta of the three partons to make all
three on-shell

The resulting matrix element can be written symbolically as

|Mm+1|
2 → |Mm|

2 ⊗ Vij,k ,

where Vij,k is a singular factor, and depends only on the
quantum numbers of i,j and k, and on their momenta. The
singular factor is otherwise completely process independent.
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Constructing the subtraction term

This approximation of the matrix element is valid in the limit
of

j soft, or
i and j collinear.

To construct subtraction term, sum over all possible dipole
configurations.

Subtraction term therefore contains all soft and collinear
divergences present in the real emission matrix element.

∑

k 6=i,j

Dij,k =
∑

k 6=i,j

1
pi .pj

〈Mij,k
m |

Tk .Tij

T2
ij

Vij,k |M
ij,k
m 〉
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One-particle phase space integration

Unique mapping of momenta back to leading order
configuration for each dipole term.

pi , pj , pk → p̃ij , p̃k

Phase space of the extra emitted parton can be factorised.

Splitting function Vij,k has been analytically integrated over
this single particle phase space in d-dimensions.

This results in a term which has the simple structure
∫

dΦ1Dij,k = Vij,k 〈M
ij,k
m |

Tk .Tij

T2
ij

|Mij,k
m 〉 .

Summing over these integrated subtraction terms gives the
counter term for the divergent virtual corrections.
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Full cross section

σNLO =

∫

m
dσLO

+

∫

m



dσV + dΦm

∑

k 6=i,j

Vij,k 〈M
ij,k
m |

Tk .Tij

T2
ij

|Mij,k
m 〉





+

∫

m+1



dσR − dΦm+1

∑

k 6=i,j

Dij,k



 .
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Summary

NLO precision is required for LHC physics.

NLO matrix elements are much trickier to implement in a
Monte Carlo event generator than their LO counterparts.

Catani-Seymour dipole subtraction can be used to make
divergent NLO contributions suitable for Monte Carlo
integration.
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