### Brane Tilings, M2-Branes and Chern-Simons Theories

#### NOPPADOL MEKAREEYA

#### Theoretical Physics Group, Imperial College London

HEP Young Theorists' Forum 2009

### My Collaborators

• Amihay Hanany, Giuseppe Torri, and John Davey







• Special thanks to: Yang-Hui He, Alexander Shannon, and Ed Segal







# Part I: Motivation and Introduction

- Example from EM: A charged particle moving along a 1 dimensional worldline is a source of 1-form field A<sub>μ</sub>.
- In supergravity, a p-brane is a (p+1) space-time dimensional object sourcing the (p+1)-form gauge field.
- In 11d SUGRA, the only antisymmetric tensor field is the 3-form  $A^{(3)}$ . The corresponding field strength is a 4-form  $F^{(4)} = dA^{(3)}$ .
  - Maxwell eq. for an electric source:

$$\underbrace{d \ast F^{(4)}}_{\circ \quad \leftarrow} = \ast \delta^{(3)}$$

• Maxwell eq. for a magnetic source:

 $\Rightarrow$  Mag. charge is localised in 6 (= 5 + 1) spacetime dim.  $\Rightarrow$  M5-brane.

(日) (同) (日) (日)

- Example from EM: A charged particle moving along a 1 dimensional worldline is a source of 1-form field A<sub>μ</sub>.
- In supergravity, a *p*-brane is a (*p*+1) space-time dimensional object sourcing the (*p*+1)-form gauge field.
- In 11d SUGRA, the only antisymmetric tensor field is the 3-form  $A^{(3)}$ . The corresponding field strength is a 4-form  $F^{(4)} = dA^{(3)}$ .
  - Maxwell eq. for an electric source:

$$\underbrace{d \ast F^{(4)}}_{\circ} = \ast \delta^{(3)}$$

• Maxwell eq. for a magnetic source:

 $\Rightarrow$  Mag. charge is localised in 6 (= 5 + 1) spacetime dim.  $\Rightarrow$  M5-brane.

(日) (同) (日) (日)

- Example from EM: A charged particle moving along a 1 dimensional worldline is a source of 1-form field A<sub>μ</sub>.
- In supergravity, a p-brane is a (p+1) space-time dimensional object sourcing the (p+1)-form gauge field.
- In 11d SUGRA, the only antisymmetric tensor field is the 3-form  $A^{(3)}$ . The corresponding field strength is a 4-form  $F^{(4)} = dA^{(3)}$ .



- Example from EM: A charged particle moving along a 1 dimensional worldline is a source of 1-form field A<sub>μ</sub>.
- In supergravity, a p-brane is a (p+1) space-time dimensional object sourcing the (p+1)-form gauge field.
- In 11d SUGRA, the only antisymmetric tensor field is the 3-form  $A^{(3)}$ . The corresponding field strength is a 4-form  $F^{(4)} = dA^{(3)}$ .
  - Maxwell eq. for an electric source:

$$\underbrace{d * F^{(4)}}_{8-\text{form}} = *\delta^{(3)}$$

• Maxwell eq. for a magnetic source:  $dF^{(4)} = *\delta^{(6)}$ 

 $\Rightarrow$  Mag. charge is localised in 6 (= 5 + 1) spacetime dim.  $\Rightarrow$  M5-brane.

4 / 28

(日) (同) (三) (三)

- Example from EM: A charged particle moving along a 1 dimensional worldline is a source of 1-form field A<sub>μ</sub>.
- In supergravity, a p-brane is a (p+1) space-time dimensional object sourcing the (p+1)-form gauge field.
- In 11d SUGRA, the only antisymmetric tensor field is the 3-form  $A^{(3)}$ . The corresponding field strength is a 4-form  $F^{(4)} = dA^{(3)}$ .
  - Maxwell eq. for an electric source:

$$\underbrace{d \ast F^{(4)}}_{8-\text{form}} = \ast \delta^{(3)}$$

• Maxwell eq. for a magnetic source:  $dF^{(4)} = *\delta^{(6)}$ 

 $\Rightarrow$  Mag. charge is localised in 6 (=5+1) spacetime dim.  $\Rightarrow$  M5-brane.

5-form

Image: A math a math

- How many conformal field theories (CFTs) do we know in (2+1) dimensions?
- What are the worldvolume theories of a stack of N M2-branes in M-theory?
- Understand Chern-Simons (CS) theories better
- Algebraic Geometry & Quiver Gauge Theories

- How many conformal field theories (CFTs) do we know in (2+1) dimensions?
- $\bullet\,$  What are the worldvolume theories of a stack of N M2-branes in M-theory?
- Understand Chern-Simons (CS) theories better
- Algebraic Geometry & Quiver Gauge Theories

- How many conformal field theories (CFTs) do we know in (2+1) dimensions?
- $\bullet\,$  What are the worldvolume theories of a stack of N M2-branes in M-theory?
- Understand Chern-Simons (CS) theories better
- Algebraic Geometry & Quiver Gauge Theories

## Motivation: AdS/CFT

Long standing problem:

- What is the field theory dual to the M-theory in  $AdS_4 \times Y_7$  background? (Y<sub>7</sub> is a Sasaki–Einstein 7-manifold)
- Each  $Y_7$  leads to a different CFT
- $\bullet\,$  The field theory can be realised as a worldvolume theory of N M2-branes placed at the tip of the Calabi–Yau cone over  $Y_7$



# Part II: $\mathcal{N} = 2$ CS-Matter Theories

"Theories with  $\mathcal{N}=1$  supersymmetry in three dimensions have no holomorphy properties, so we cannot control their non-perturbative dynamics."

[Aharony, Hanany, Intriligator, Seiberg, Strassler '97]

4 D b 4 A b

### • Gauge group: $\mathcal{G} = \prod_{a=1}^{G} U(N_a)$

- A 3d  $\mathcal{N} = 2$  vector multiplet  $V_a$  can be obtained from a dimensional reduction of 4d  $\mathcal{N} = 1$  vector multiplet. It consists of
  - A one-form gauge field A<sub>a</sub>, a real scalar field σ<sub>a</sub> (from the components of the vector field in the compactified direction), a two-component Dirac spinor χ<sub>a</sub>, a real auxiliary scalar fields D<sub>a</sub>.
  - All fields transform in the adjoint representation of  $U(N_a)$ :
- Matter fields are denoted by  $\Phi_{ab}$ . Each of them is a chiral multiplet accordingly charged in the gauge groups  $U(N_a)$  and  $U(N_b)$ . It consists of
  - Complex scalars  $X_{ab}$  , Fermions  $\psi_{ab}$  , Auxiliary scalars  $F_{ab}$  .

• • • • • • • • • • • •

### $\mathcal{N}=2$ CS-Matter Theories

- Gauge group:  $\mathcal{G} = \prod_{a=1}^{G} U(N_a)$
- A 3d  $\mathcal{N} = 2$  vector multiplet  $V_a$  can be obtained from a dimensional reduction of 4d  $\mathcal{N} = 1$  vector multiplet. It consists of
  - A one-form gauge field A<sub>a</sub>, a real scalar field σ<sub>a</sub> (from the components of the vector field in the compactified direction), a two-component Dirac spinor χ<sub>a</sub>, a real auxiliary scalar fields D<sub>a</sub>.
  - All fields transform in the adjoint representation of  $U(N_a)$ :
- Matter fields are denoted by  $\Phi_{ab}$ . Each of them is a chiral multiplet accordingly charged in the gauge groups  $U(N_a)$  and  $U(N_b)$ . It consists of
  - Complex scalars  $X_{ab}$  , Fermions  $\psi_{ab}$  , Auxiliary scalars  $F_{ab}$  .

### $\mathcal{N} = 2$ CS-Matter Theories

- Gauge group:  $\mathcal{G} = \prod_{a=1}^{G} U(N_a)$
- A 3d  $\mathcal{N} = 2$  vector multiplet  $V_a$  can be obtained from a dimensional reduction of 4d  $\mathcal{N} = 1$  vector multiplet. It consists of
  - A one-form gauge field A<sub>a</sub>, a real scalar field σ<sub>a</sub> (from the components of the vector field in the compactified direction), a two-component Dirac spinor χ<sub>a</sub>, a real auxiliary scalar fields D<sub>a</sub>.
  - All fields transform in the adjoint representation of  $U(N_a)$ :
- Matter fields are denoted by  $\Phi_{ab}$ . Each of them is a chiral multiplet accordingly charged in the gauge groups  $U(N_a)$  and  $U(N_b)$ . It consists of
  - Complex scalars  $X_{ab}$  , Fermions  $\psi_{ab}$  , Auxiliary scalars  $F_{ab}$  .

(日) (同) (日) (日)

- Gauge group:  $\mathcal{G} = \prod_{a=1}^{G} U(N_a)$
- A 3d  $\mathcal{N} = 2$  vector multiplet  $V_a$  can be obtained from a dimensional reduction of 4d  $\mathcal{N} = 1$  vector multiplet. It consists of
  - A one-form gauge field  $A_a$ , a real scalar field  $\sigma_a$  (from the components of the vector field in the compactified direction), a two-component Dirac spinor  $\chi_a$ , a real auxiliary scalar fields  $D_a$ .
  - All fields transform in the adjoint representation of U(N<sub>a</sub>):
- Matter fields are denoted by  $\Phi_{ab}$ . Each of them is a chiral multiplet accordingly charged in the gauge groups  $U(N_a)$  and  $U(N_b)$ . It consists of
  - Complex scalars  $X_{ab}$ , Fermions  $\psi_{ab}$ , Auxiliary scalars  $F_{ab}$ .

- $\bullet\,$  The action consists of 3 terms:  $S\,=\,S_{\rm CS}+S_{\rm matter}+S_{\rm potential}$  .
- CS term in Wess–Zumino gauge:

$$S_{\rm CS} = \sum_{a=1}^{G} \frac{k_a}{4\pi} \int \text{Tr} \left( A_a \wedge dA_a + \frac{2}{3} A_a \wedge A_a \wedge A_a - \bar{\chi}_a \chi_a + 2D_a \sigma_a \right) \,,$$

where  $k_a$  are called the **CS levels**.

• The matter (kinetic) term is

$$S_{\text{matter}} = \int d^3x \ d^4\theta \sum_{\Phi_{ab}} \text{Tr} \left( \Phi_{ab}^{\dagger} e^{-V_a} \Phi_{ab} e^{V_b} \right)$$

• The superpotential term is

$$S_{\text{potential}} = \int \mathrm{d}^3 x \, \mathrm{d}^2 \theta \, W(\Phi_{ab}) + \mathrm{c.c.} \; .$$

- $\bullet\,$  The action consists of 3 terms:  $S\,=\,S_{\rm CS}+S_{\rm matter}+S_{\rm potential}$  .
- CS term in Wess-Zumino gauge:

$$S_{\rm CS} = \sum_{a=1}^{G} \frac{k_a}{4\pi} \int \text{Tr} \left( A_a \wedge dA_a + \frac{2}{3} A_a \wedge A_a \wedge A_a - \bar{\chi}_a \chi_a + 2D_a \sigma_a \right) ,$$

where  $k_a$  are called the **CS levels**.

• The matter (kinetic) term is

$$S_{\text{matter}} = \int d^3x \ d^4\theta \sum_{\Phi_{ab}} \text{Tr} \left( \Phi_{ab}^{\dagger} e^{-V_a} \Phi_{ab} e^{V_b} \right)$$

• The superpotential term is

$$S_{\text{potential}} = \int \mathrm{d}^3 x \, \mathrm{d}^2 \theta \, W(\Phi_{ab}) + \mathrm{c.c.} \; .$$

- $\bullet\,$  The action consists of 3 terms:  $S\,=\,S_{\rm CS}+S_{\rm matter}+S_{\rm potential}$  .
- CS term in Wess-Zumino gauge:

$$S_{\rm CS} = \sum_{a=1}^{G} \frac{k_a}{4\pi} \int \text{Tr} \left( A_a \wedge dA_a + \frac{2}{3} A_a \wedge A_a \wedge A_a - \bar{\chi}_a \chi_a + 2D_a \sigma_a \right) ,$$

where  $k_a$  are called the **CS levels**.

• The matter (kinetic) term is

$$S_{\text{matter}} = \int \mathrm{d}^3 x \; \mathrm{d}^4 \theta \sum_{\Phi_{ab}} \text{Tr} \left( \Phi^{\dagger}_{ab} e^{-V_a} \Phi_{ab} e^{V_b} \right) \; .$$

• The superpotential term is

$$S_{\text{potential}} = \int \mathrm{d}^3 x \, \mathrm{d}^2 \theta \, W(\Phi_{ab}) + \text{c.c.}$$

- $\bullet\,$  The action consists of 3 terms:  $S\,=\,S_{\rm CS}+S_{\rm matter}+S_{\rm potential}$  .
- CS term in Wess-Zumino gauge:

$$S_{\rm CS} = \sum_{a=1}^{G} \frac{k_a}{4\pi} \int \text{Tr} \left( A_a \wedge dA_a + \frac{2}{3} A_a \wedge A_a \wedge A_a - \bar{\chi}_a \chi_a + 2D_a \sigma_a \right) ,$$

where  $k_a$  are called the **CS levels**.

• The matter (kinetic) term is

$$S_{\text{matter}} = \int d^3x \ d^4\theta \sum_{\Phi_{ab}} \text{Tr} \left( \Phi^{\dagger}_{ab} e^{-V_a} \Phi_{ab} e^{V_b} \right)$$

• The superpotential term is

$$S_{\text{potential}} = \int \mathrm{d}^3 x \, \mathrm{d}^2 \theta \, W(\Phi_{ab}) + \mathrm{c.c.} \; .$$

9 / 28

• The Yang–Mills coupling has mass dimension 1/2 in (2+1) dimensions

- All theories are strongly coupled in the IR
- The CS levels k<sub>a</sub> are integer valued (to ensure gauge invariance of the action)
  Non-renormalisable theorem (NRT): Each k<sub>a</sub> is not renormalised beyond possible finite 1-loop shift [Witten '99]
- The CS levels  $k_a$  have mass dimensions 0
  - All couplings in the action are classically marginal
  - NRT  $\Rightarrow$  All couplings are quantum mechanically exactly marginal

(Quantum corrections are either irrelevant in the IR or can be absorbed by field redefinitions.)

< ロ > < 同 > < 三 > < 三

The theory is conformally invariant at the quantum level

- The Yang–Mills coupling has mass dimension 1/2 in (2+1) dimensions
  - All theories are strongly coupled in the IR
- The CS levels  $k_a$  are integer valued (to ensure gauge invariance of the action)
  - Non-renormalisable theorem (NRT): Each k<sub>a</sub> is not renormalised beyond a possible finite 1-loop shift [Witten '99]
- The CS levels  $k_a$  have mass dimensions 0
  - All couplings in the action are classically marginal
  - NRT  $\Rightarrow$  All couplings are quantum mechanically exactly marginal
    - (Quantum corrections are either irrelevant in the IR or can be absorbed by field redefinitions.)

(日) (同) (日) (日)

The theory is conformally invariant at the quantum level

- The Yang–Mills coupling has mass dimension 1/2 in (2+1) dimensions
  - All theories are strongly coupled in the IR
- The CS levels  $k_a$  are integer valued (to ensure gauge invariance of the action)
  - Non-renormalisable theorem (NRT): Each k<sub>a</sub> is not renormalised beyond a possible finite 1-loop shift [Witten '99]
- The CS levels  $k_a$  have mass dimensions 0
  - All couplings in the action are classically marginal
  - NRT  $\Rightarrow$  All couplings are quantum mechanically exactly marginal

(Quantum corrections are either irrelevant in the IR or can be absorbed by field redefinitions.)

(日) (同) (日) (日)

• The theory is conformally invariant at the quantum level

- The Yang–Mills coupling has mass dimension 1/2 in (2+1) dimensions
  - All theories are strongly coupled in the IR
- The CS levels  $k_a$  are integer valued (to ensure gauge invariance of the action)
  - Non-renormalisable theorem (NRT): Each k<sub>a</sub> is not renormalised beyond a possible finite 1-loop shift [Witten '99]
- The CS levels  $k_a$  have mass dimensions 0
  - All couplings in the action are classically marginal
  - NRT  $\Rightarrow$  All couplings are quantum mechanically exactly marginal

(Quantum corrections are either irrelevant in the IR or can be absorbed by field redefinitions.)

• The theory is conformally invariant at the quantum level

- The Yang–Mills coupling has mass dimension 1/2 in (2+1) dimensions
  - All theories are strongly coupled in the IR
- The CS levels  $k_a$  are integer valued (to ensure gauge invariance of the action)
  - Non-renormalisable theorem (NRT): Each k<sub>a</sub> is not renormalised beyond a possible finite 1-loop shift [Witten '99]
- The CS levels  $k_a$  have mass dimensions 0
  - All couplings in the action are classically marginal
  - NRT  $\Rightarrow$  All couplings are quantum mechanically exactly marginal

(Quantum corrections are either irrelevant in the IR or can be absorbed by field redefinitions.)

10 / 28

• The theory is conformally invariant at the quantum level

- The vacuum equations:
  - F-terms:  $\partial_{X_{ab}}W = 0$  1st D-terms:  $\mu_a(X) := \sum_{b=1}^G X_{ab}X_{ab}^{\dagger} \sum_{c=1}^G X_{ca}^{\dagger}X_{ca} + [X_{aa}, X_{aa}^{\dagger}] = 4k_a\sigma_a$

  - 2nd D-terms:  $\sigma_a X_{ab} - X_{ab} \sigma_b = 0$
  - Note that the fields  $X_{ab}, \sigma_a$  are matrices, and no summation convention.
- Space of solutions of these eqns are called the mesonic moduli space,  $\mathcal{M}^{\text{mes}}$ .

- The vacuum equations:

  - F-terms:  $\partial_{X_{ab}}W = 0$  1st D-terms:  $\mu_a(X) := \sum_{b=1}^G X_{ab}X_{ab}^{\dagger} \sum_{c=1}^G X_{ca}^{\dagger}X_{ca} + [X_{aa}, X_{aa}^{\dagger}] = 4k_a\sigma_a$
  - 2nd D-terms:  $\sigma_a X_{ab} - X_{ab} \sigma_b = 0$
  - Note that the fields  $X_{ab}, \sigma_a$  are matrices, and no summation convention.
- Space of solutions of these eqns are called the mesonic moduli space,  $\mathcal{M}^{\text{mes}}$ .

#### Assume that

- Gauge group:  $\mathcal{G} = U(N)^G$  (*i.e.* setting all  $N_a = N$ )
- 2 Each chiral multiplet appears precisely twice in W. Once with a positive sign and once with a negative sign. (toric condition)

#### • Consequences:

- N has the physical interpretation as the number of M2-branes in the stack on which the gauge theory is living
- The mesonic moduli space M<sup>mes</sup> is in fact the space that an M2-brane probes

< □ > < 同 > < 三 > < 三

The mesonic moduli space is 4 complex dimensional. It is a CY 4-fold.

#### Assume that

- Gauge group:  $\mathcal{G} = U(N)^G$  (*i.e.* setting all  $N_a = N$ )
- 2 Each chiral multiplet appears precisely twice in W. Once with a positive sign and once with a negative sign. (toric condition)
- Consequences:
  - N has the physical interpretation as the number of M2-branes in the stack on which the gauge theory is living
  - ② The mesonic moduli space  $\mathcal{M}^{\mathrm{mes}}$  is in fact the space that an M2-brane probes
  - The mesonic moduli space is 4 complex dimensional. It is a CY 4-fold.

#### Assume that

- Gauge group:  $\mathcal{G} = U(N)^G$  (*i.e.* setting all  $N_a = N$ )
- 2 Each chiral multiplet appears precisely twice in W. Once with a positive sign and once with a negative sign. (toric condition)
- Consequences:
  - N has the physical interpretation as the number of M2-branes in the stack on which the gauge theory is living
  - ${\it 2}$  The mesonic moduli space  ${\cal M}^{\rm mes}$  is in fact the space that an M2-brane probes
    - The mesonic moduli space is 4 complex dimensional. It is a CY 4-fold.

#### Assume that

- Gauge group:  $\mathcal{G} = U(N)^G$  (*i.e.* setting all  $N_a = N$ )
- 2 Each chiral multiplet appears precisely twice in W. Once with a positive sign and once with a negative sign. (toric condition)
- Consequences:
  - N has the physical interpretation as the number of M2-branes in the stack on which the gauge theory is living
  - ${\it 2}$  The mesonic moduli space  ${\cal M}^{\rm mes}$  is in fact the space that an M2-brane probes
  - The mesonic moduli space is 4 complex dimensional. It is a CY 4-fold.

What is a quiver gauge theory?

- It is a gauge theory which can be represented by a directed graph with nodes and arrows.
  - $\bullet$  Each node represents each factor in the gauge group  ${\cal G}$  .
  - Each arrow going from a node a to a different node b represents a field X<sub>ab</sub> in the bifundamental rep. (N, N) of U(N)<sub>a</sub> × U(N)<sub>b</sub>.
  - Each loop on a node a represents a field  $\phi_a$  in the adjoint rep. of  $U(N)_a$  .



• For a CS quiver theory, we also need to assign the CS levels  $k_a$  to each node.

- Take N = 1. Gauge group  $\mathcal{G} = U(1)^G$ .
- The fields  $X_{ab}, \sigma_a$  are just **complex numbers**.
- The vacuum equations do the following things:
  - Set all  $\sigma_a$  to a single field, say  $\sigma$ . It is a real field.
  - Impose the following condition on the CS levels:  $\sum_{a} k_{a} = 0$ .
- For simplicity, take k ≡ gcd({k<sub>a</sub>}) = 1. Otherwise, simply consider the Z<sub>k</sub> orbifold of the mesonic moduli space.

- Take N = 1. Gauge group  $\mathcal{G} = U(1)^G$ .
- The fields  $X_{ab}, \sigma_a$  are just complex numbers.
- The vacuum equations do the following things:
  - Set all  $\sigma_a$  to a single field, say  $\sigma$ . It is a real field.
  - Impose the following condition on the CS levels:  $\sum_{a} k_{a} = 0$ .
- For simplicity, take k ≡ gcd({k<sub>a</sub>}) = 1. Otherwise, simply consider the Z<sub>k</sub> orbifold of the mesonic moduli space.

- Take N = 1. Gauge group  $\mathcal{G} = U(1)^G$ .
- The fields  $X_{ab}, \sigma_a$  are just complex numbers.
- The vacuum equations do the following things:
  - Set all  $\sigma_a$  to a single field, say  $\sigma$ . It is a real field.
  - Impose the following condition on the CS levels:  $\sum_{a} k_{a} = 0$ .
- For simplicity, take k ≡ gcd({k<sub>a</sub>}) = 1. Otherwise, simply consider the Z<sub>k</sub> orbifold of the mesonic moduli space.

- Take N = 1. Gauge group  $\mathcal{G} = U(1)^G$ .
- The fields  $X_{ab}, \sigma_a$  are just complex numbers.
- The vacuum equations do the following things:
  - Set all  $\sigma_a$  to a single field, say  $\sigma$ . It is a real field.
  - Impose the following condition on the CS levels:  $\sum_{a} k_{a} = 0$ .
- For simplicity, take k ≡ gcd({k<sub>a</sub>}) = 1. Otherwise, simply consider the Z<sub>k</sub> orbifold of the mesonic moduli space.

• Solving the vacuum equations in 2 steps:

In Solving F-terms. The space of solutions of F-terms is the Master space,  $\mathcal{F}^{\flat}$ .

In Further solving D-terms: Modding out  $\mathcal{F}^{\flat}$  by the gauge symmetry.

- Among the original gauge symmetry U(1)<sup>G</sup>, one is a diagonal U(1); it does not couple to matter fields → We are left with U(1)<sup>G-1</sup>.
- Up to this point, the process is the same for a (3+1)d theory living on a D3-brane probing  ${\rm CY}_3$

• Solving the vacuum equations in 2 steps:

**(**) Solving F-terms. The space of solutions of F-terms is the Master space,  $\mathcal{F}^{\flat}$ .

<sup>(2)</sup> Further solving D-terms: Modding out  $\mathcal{F}^{\flat}$  by **the gauge symmetry**.

- Among the original gauge symmetry U(1)<sup>G</sup>, one is a diagonal U(1); it does not couple to matter fields → We are left with U(1)<sup>G-1</sup>.
- Up to this point, the process is the same for a (3+1)d theory living on a D3-brane probing  ${\rm CY}_3$

- Solving the vacuum equations in 2 steps:
  - **O** Solving F-terms. The space of solutions of F-terms is the Master space,  $\mathcal{F}^{\flat}$ .
  - **2** Further solving D-terms: Modding out  $\mathcal{F}^{\flat}$  by **the gauge symmetry**.
- Among the original gauge symmetry U(1)<sup>G</sup>, one is a diagonal U(1); it does not couple to matter fields → We are left with U(1)<sup>G-1</sup>.
- Up to this point, the process is the same for a (3+1)d theory living on a D3-brane probing  ${\rm CY}_3$

- Solving the vacuum equations in 2 steps:
  - **O** Solving F-terms. The space of solutions of F-terms is the Master space,  $\mathcal{F}^{\flat}$ .
  - **2** Further solving D-terms: Modding out  $\mathcal{F}^{\flat}$  by **the gauge symmetry**.
- Among the original gauge symmetry U(1)<sup>G</sup>, one is a diagonal U(1); it does not couple to matter fields → We are left with U(1)<sup>G-1</sup>.
- Up to this point, the process is the same for a (3+1)d theory living on a D3-brane probing CY<sub>3</sub>

- Solving the vacuum equations in 2 steps:
  - **O** Solving F-terms. The space of solutions of F-terms is the Master space,  $\mathcal{F}^{\flat}$ .
  - **2** Further solving D-terms: Modding out  $\mathcal{F}^{\flat}$  by the gauge symmetry.
- Among the original gauge symmetry U(1)<sup>G</sup>, one is a diagonal U(1); it does not couple to matter fields → We are left with U(1)<sup>G-1</sup>.
- Up to this point, the process is the same for a (3+1)d theory living on a D3-brane probing  ${\rm CY}_3$

- The CS levels induce FI-like terms:  $\zeta_a = 4k_a\sigma$ ; it selects out another U(1) to fibre over  $CY_3$  to give a  $CY_4$ .
- The mesonic moduli space  $\mathcal{M}^{mes}$  is a  $CY_4$ .
  - $\rightarrow$  We are left with  $U(1)^{G-2}$ . This gives G-2 baryonic directions.
- Therefore, the mesonic moduli space can be written as

$$\mathcal{M}_{N=1}^{\mathrm{mes}} = \mathcal{F}^{\flat} / / U(1)^{G-2}$$

$$\mathcal{M}_N^{\mathrm{mes}} = \mathrm{Sym}^N \left( \mathcal{M}_{N=1}^{\mathrm{mes}} \right)$$

- The CS levels induce FI-like terms:  $\zeta_a = 4k_a\sigma$ ; it selects out another U(1) to fibre over CY<sub>3</sub> to give a CY<sub>4</sub>.
- The mesonic moduli space  $\mathcal{M}^{mes}$  is a  $CY_4$ .
  - $\rightarrow$  We are left with  $U(1)^{G-2}$ . This gives G-2 baryonic directions.
- Therefore, the mesonic moduli space can be written as

$$\mathcal{M}_{N=1}^{\mathrm{mes}} = \mathcal{F}^{\flat} / / U(1)^{G-2}$$

$$\mathcal{M}_N^{\mathrm{mes}} = \mathrm{Sym}^N \left( \mathcal{M}_{N=1}^{\mathrm{mes}} \right)$$

- The CS levels induce FI-like terms:  $\zeta_a = 4k_a\sigma$ ; it selects out another U(1) to fibre over CY<sub>3</sub> to give a CY<sub>4</sub>.
- The mesonic moduli space  $\mathcal{M}^{mes}$  is a  $CY_4$ .
  - $\rightarrow$  We are left with  $U(1)^{G-2}$ . This gives G-2 baryonic directions.
- Therefore, the mesonic moduli space can be written as

$$\mathcal{M}_{N=1}^{\mathrm{mes}} = \mathcal{F}^{\flat} / / U(1)^{G-2}$$

$$\mathcal{M}_N^{\mathrm{mes}} = \mathrm{Sym}^N \left( \mathcal{M}_{N=1}^{\mathrm{mes}} \right)$$

- The CS levels induce FI-like terms:  $\zeta_a = 4k_a\sigma$ ; it selects out another U(1) to fibre over CY<sub>3</sub> to give a CY<sub>4</sub>.
- The mesonic moduli space  $\mathcal{M}^{mes}$  is a  $CY_4$ .
  - $\rightarrow$  We are left with  $U(1)^{G-2}$ . This gives G-2 baryonic directions.
- Therefore, the mesonic moduli space can be written as

$$\mathcal{M}_{N=1}^{\mathrm{mes}} = \mathcal{F}^{\flat} / / U(1)^{G-2}$$

$$\mathcal{M}_N^{\mathrm{mes}} = \mathrm{Sym}^N \left( \mathcal{M}_{N=1}^{\mathrm{mes}} \right)$$

### Example: The ABJM Theory

• The theory has G=2 gauge groups, and 4 bi-fundamental fields  $X_{12}^1, X_{12}^2, X_{21}^1, X_{21}^2$ . [Aharony, Bergman, Jafferis, Maldacena '08]



- The CS levels:  $k_1 = 1, k_2 = -1.$
- Superpotential:  $W = \text{Tr}(X_{12}^1 X_{21}^1 X_{12}^2 X_{21}^2 X_{12}^1 X_{21}^2 X_{21}^2)$ .
- The abelian case (N = 1): W = 0

 $\Rightarrow~$  The F-terms admit any complex solutions of  $X^i_{12}, X^i_{21}~(i=1,2)$ 

 $\Rightarrow$  The Master space is  $\mathcal{F}^{\flat} = \mathbb{C}^4$ 

 $\Rightarrow$  The mesonic moduli space is  $\mathcal{M}_{N=1}^{\text{mes}} = \mathcal{F}^{\flat} / / U(1)^{G-2} = \mathbb{C}^4$ 

・ロト ・得ト ・ヨト ・ヨト

### Example: The ABJM Theory

• The theory has G=2 gauge groups, and 4 bi-fundamental fields  $X_{12}^1, X_{12}^2, X_{21}^1, X_{21}^2$ . [Aharony, Bergman, Jafferis, Maldacena '08]



- The CS levels:  $k_1 = 1, \ k_2 = -1.$
- Superpotential:  $W = \operatorname{Tr}(X_{12}^1 X_{21}^1 X_{12}^2 X_{21}^2 X_{12}^1 X_{21}^2 X_{21}^2 X_{21}^1)$ .
- The abelian case (N = 1): W = 0

 $\Rightarrow~$  The F-terms admit any complex solutions of  $X^i_{12}, X^i_{21}~(i=1,2)$ 

 $\Rightarrow$  The Master space is  $\mathcal{F}^{\flat} = \mathbb{C}^4$ 

 $\Rightarrow$  The mesonic moduli space is  $\mathcal{M}_{N=1}^{ ext{mes}}=\mathcal{F}^{lat}//U(1)^{G-2}=\mathbb{C}^4$ 

### Example: The ABJM Theory

• The theory has G=2 gauge groups, and 4 bi-fundamental fields  $X_{12}^1, X_{12}^2, X_{21}^1, X_{21}^2$ . [Aharony, Bergman, Jafferis, Maldacena '08]



- The CS levels:  $k_1 = 1, \ k_2 = -1.$
- Superpotential:  $W = \text{Tr}(X_{12}^1 X_{21}^1 X_{12}^2 X_{21}^2 X_{12}^1 X_{21}^2 X_{21}^2 X_{21}^1)$ .
- The abelian case (N = 1): W = 0

 $\Rightarrow$  The F-terms admit any complex solutions of  $X_{12}^i, X_{21}^i$  (i=1,2)

 $\Rightarrow$  The Master space is  $\mathcal{F}^{\flat} = \mathbb{C}^4$ 

 $\Rightarrow \quad \text{The mesonic moduli space is} \quad \mathcal{M}_{N=1}^{\rm mes} = \mathcal{F}^\flat / / U(1)^{G-2} = \mathbb{C}^4$ 

# Part III: Brane Tilings

### Brane Tilings

- The toric condition of the superpotential gives rise to a bipartite graph on  $\mathbb{T}^2$ which is also known as a brane tiling. (Hanany *et al.*)
- For a (2 + 1)-dimensional theory, the tiling has an interpretation of a network of D4-branes and NS5-brane ending on the NS5-brane in Type IIA (which is a compactification of M-theory). (Imamura & Kimura '08)
- Example: The quiver diagram and the brane tiling of the ABJM Theory





## Tiling-Quiver Dictionary



- 2n sided face = U(N) gauge group with nN flavours
- Edge = A chiral field charged under the two gauge group corresponding to the faces it separates

20 / 28

• D valent node = A D-th order interaction term in superpotential



- **Graph is bipartite:** Nodes alternate between clockwise (white) and anticlockwise (black) orientations of arrows.
- Black (white) nodes connected to white (black) only
- Odd sided faces are forbidden by anomaly cancellation condition
- White (black) nodes give + (-) sign in the superpotential

**Example of ABJM:**  $W = \text{Tr}(X_{12}^1 X_{21}^1 X_{12}^2 X_{21}^2 - X_{12}^1 X_{21}^2 X_{21}^2)$ 



- **Graph is bipartite:** Nodes alternate between clockwise (white) and anticlockwise (black) orientations of arrows.
- Black (white) nodes connected to white (black) only
- Odd sided faces are forbidden by anomaly cancellation condition
- White (black) nodes give + (-) sign in the superpotential

Example of ABJM:  $W = \text{Tr}(X_{12}^1 X_{21}^1 X_{12}^2 X_{21}^2 - X_{12}^1 X_{21}^2 X_{21}^2)$ 



- **Graph is bipartite:** Nodes alternate between clockwise (white) and anticlockwise (black) orientations of arrows.
- Black (white) nodes connected to white (black) only
- Odd sided faces are forbidden by anomaly cancellation condition
- White (black) nodes give + (-) sign in the superpotential

**Example of ABJM:**  $W = \text{Tr}(X_{12}^1 X_{21}^1 X_{12}^2 X_{21}^2 - X_{12}^1 X_{21}^2 X_{21}^2)$ 



- **Graph is bipartite:** Nodes alternate between clockwise (white) and anticlockwise (black) orientations of arrows.
- Black (white) nodes connected to white (black) only
- Odd sided faces are forbidden by anomaly cancellation condition
- White (black) nodes give + (-) sign in the superpotential

Example of ABJM:  $W = \text{Tr}(X_{12}^1 X_{21}^1 X_{12}^2 X_{21}^2 - X_{12}^1 X_{21}^2 X_{21}^2 X_{21}^1)$ 

# Part IV: Toric Phases

æ

- Each brane tiling (with specified CS levels) defines a unique Lagrangian for an  $\mathcal{N} = 2$  CS theory in 2+1 dimensions.
- All models described by brane tilings are conjectured to live on the worldvolume of an M2-brane probing the CY4
- Largest known family of SCFTs in (2+1) dimensions!
- Tiling information (= quiver + superpotential + CS levels) → M<sup>mes</sup>
  via the 'forward algorithm' [Hanany *et al.*]

- Each brane tiling (with specified CS levels) defines a unique Lagrangian for an  $\mathcal{N} = 2$  CS theory in 2+1 dimensions.
- All models described by brane tilings are conjectured to live on the worldvolume of an M2-brane probing the CY4
- Largest known family of SCFTs in (2+1) dimensions!
- Tiling information (= quiver + superpotential + CS levels) → M<sup>mes</sup>
  via the 'forward algorithm' [Hanany *et al.*]

- Each brane tiling (with specified CS levels) defines a unique Lagrangian for an  $\mathcal{N} = 2$  CS theory in 2+1 dimensions.
- All models described by brane tilings are conjectured to live on the worldvolume of an M2-brane probing the CY4
- Largest known family of SCFTs in (2+1) dimensions!
- Tiling information (= quiver + superpotential + CS levels) → M<sup>mes</sup>
  via the 'forward algorithm' [Hanany *et al.*]

- Each brane tiling (with specified CS levels) defines a unique Lagrangian for an  $\mathcal{N} = 2$  CS theory in 2+1 dimensions.
- All models described by brane tilings are conjectured to live on the worldvolume of an M2-brane probing the CY4
- Largest known family of SCFTs in (2+1) dimensions!
- Tiling information (= quiver + superpotential + CS levels) → M<sup>mes</sup>
  via the 'forward algorithm' [Hanany *et al.*]

- There are some models which have different brane tilings, but have the same mesonic moduli space. [Davey, Hanany, He, NM, Torri '08 - '09]
- These models are said to be **toric dual** to each other. Each of these models is referred to as **toric phase**.
- The partition functions (Hilbert series), global symmetries, R-charges, and generators are matched between toric phases

- There are some models which have different brane tilings, but have the same mesonic moduli space. [Davey, Hanany, He, NM, Torri '08 - '09]
- These models are said to be **toric dual** to each other. Each of these models is referred to as **toric phase**.
- The partition functions (Hilbert series), global symmetries, R-charges, and generators are matched between toric phases

- There are some models which have different brane tilings, but have the same mesonic moduli space. [Davey, Hanany, He, NM, Torri '08 - '09]
- These models are said to be **toric dual** to each other. Each of these models is referred to as **toric phase**.
- The partition functions (Hilbert series), global symmetries, R-charges, and generators are matched between toric phases

### Phases of The $\mathbb{C}^4$ Theory

• Phase I: The ABJM model  $(k_1 = -k_2 = 1)$ 





• Phase II: The dual ABJM model  $(k_1 = -k_2 = 1)$ 





## Phases of The Conifold $(\mathcal{C}) \times \underline{\mathbb{C}}$ Theory

• Phase I: 
$$k_1 = -k_2 = 1, k_3 = 0$$



• Phase II:  $k_1 = -k_2 = 1$ 



• Phase III:  $k_1 = 0, k_2 = -k_3 = 1$ 









### Phases of The $D_3$ Theory

• Phase I: 
$$k_1 = k_2 = -k_3 = -k_4 = 1$$













# Phases of The $Q^{1,1,1}/\mathbb{Z}_2$ Theory

• Phase I: 
$$k_1 = -k_2 = -k_3 = k_4 = 1$$





• Phase II: 
$$k_1 = k_2 = -k_3 = -k_{3'} = 1$$





э