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Black Hole Thermodynamics

Hawking and Bekenstein in the early 70’s conjectured that black
holes have thermodynamic properties.

Black holes have entropy S .

Black holes have Hawking temperature TH , consistent with
thermodynamic relation between energy, entropy and
temperature.

Thermodynamics

S = A
4 where A is the area of the event horizon.

TH = κ
2π where κ in the surface gravity of the black hole.
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Path Integral Formulation

In 1976 Hawking and Gibbons demonstrated that these
thermodynamic results could be attained via a path integral
approach to quantum gravity.

In this approach one considers expressions of the form

Z =

∫
d [g ]d [φ]e iSE [g ,φ]

where Z is the partition function, d [g ] and d [φ] are measures
of the space of metrics and matter fields respectively and
SE [g , φ] is the action.
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Euclideanisation and Temperature

For ease of calculation the metric must be Euclideanised i.e.
t → iτ and the metric becomes positive definite.

Then, by including all metrics that are asymptotically flat and
have periodicity of the imaginary time coordinate β = ∆τ , the
path integral gives the partition function for a system at
temperature T = 1

β .
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Topology of Euclidean Black Holes

Euclidean Schwarzschild black hole metric

ds2 = (1− rs
r

)dτ2 + (1− rs
r

)−1dr2 + r2(dθ2 + sin2θdφ2)

Singular at r = rs .

A change variables of ρ2 = (2rs)2(1− rs
r ), gives

ds2 = ρ2(
τ

2rs
)2 + dρ2 + r2

s dΩ2
II as r → rs .

→ τ must be periodic with period β = 4πrs

Singularity is coordinate singularity

Metric is only defined on rs ≤ r <∞
The metric has topology R2 × S2.
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Black Hole Partition function

For black holes the key contributions to the path integral come
from geometries that have topology such as this i.e. R2 × S2.

For the Schwarzschild black hole including this geometry alone
results in the partition function from which the famous results
can be derived.
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Vortices

A vortex is a non-perturbative, non-trivial solution of the field
equations.

This talk will consider only local Abelian Higgs vortices.

They can be created during phase transitions.

Abelian Higgs Lagrangian

L = −1

4
FµνF

µν +Dµφ(Dµφ)∗ − λ

4
(φφ∗ − η2)2,

φ(x)
′

= e i .e.Λ(x)φ(x), Aµ(x)
′

= Aµ(x)− ∂µΛ(x),

Dµφ = ∂µφ+ ieAµφ.
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Vortex Formation

L = −1

4
FµνF

µν +Dµφ(Dµφ)∗ − λ

4
(φφ∗ − η2)2

If η > 0 then it is the symmetry breaking scale, an energy
scale below which φ(x) acquires a vev6= 0, the symmetry
breaks and the theory undergoes a phase transition.

It is likely that during a transition a non-trivial winding of the
phase will appear about some point.

For this winding to be reconciled at the origin, φ must rise up
the potential barrier to φ = 0, thus a stable, localised,
non-zero energy density appears which forms the vortex core.
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Field Configuration

Finite energy considerations imply that φ→ η as r →∞ (it’s
vacuum value) and Aµ must asymptotically be a pure gauge
rotation.

Simplest Field Configuration for Vortices

φ = ηX (r)e ikθ,

{
X (0) = 0,

X (r)→ 1, r →∞.

Aµ =
1

e
(P(r)− k)∂µθ,

{
P(0) = k ,

P(r)→ 0, r →∞.
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Field Equations

This form simplifies the field equations for variables X (r) and
P(r).

Field Equations In Minkowski Background

X ′′ =
−X ′

r
+

P2X

r2
+
λη2

2
(X 2 − 1)X ,

P ′′ =
P ′

r
+ 2e2η2X 2P.

These coupled, second order, ordinary differential equations
can be solved numerically.
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Field Distributions
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Figure: Field distribution for k=1 and k=2 vortices
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Vortices and Gravity

To include gravity:

The Minkowski metric must be replaced by gµν , the general
metric.

The field equations must now include components of the
metric and be coupled to the Einstein equations. Giving more
differential equations of more variables.

These equations have been solved for a vortex in an otherwise flat
spacetime and give an interesting result.

The geometry of the spacetime outside the core is locally
identical to Minkowski but not globally.

The effect of the vortex is to introduce a ‘deficit angle’
making the spacetime that of a snub-nosed cone.

∆ = 8πGµ

where ∆ is the deficit angle, G is Newtons constant and µ is the
vortex mass per unit length.
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Vortex on a Black Hole

The temperature of a black hole depends on the periodicity,
β, of the imaginary temporal coordinate.

The gravitational effect of a vortex on the surrounding space
time is to reduce the period of the dimension in which its
phase lies.

Therefore, one might expect that a vortex on a black hole
configured such that its phase lies in the temporal direction
may effect the temperature of a black hole.
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Set up

We now consider an Abelian Higgs Lagrangian with General
Euclidean Schwarzschild metric

Lagrangian and Metric

L =
1

4
FµνF

µν +Dµφ(Dµφ)∗ +
λ

4
(φφ∗ − η2)2,

ds2 = A2dτ2 + A−2dr2 + C 2(dθ2 + sin2θdφ2).

Field Configuration

φ = ηX (r)e ik 2πτ
β ,

Aµ =
2π

βe
(P(r)− k)∂µτ =

2π

βe
(Pµ − k∂µ).

This configuration ensures cylindrical symmetry about τ which
leads to A = A(r) and C = C (r).
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Field Equations

Field Equations

Varying φ and Aµ gives

1

C 2
(C 2P ′)′ = 2e2η2 X 2P

A2

1

C 2
(C 2A2X ′)′ =

P2X4π2

A2β2
+
λη2

2
X (X 2 − 1).

Varying gµν gives the Einstein equations, which for this case are:

C ′′ = 4πG
C

A2
(T 0

0 − T r
r )

((A2)′C 2)′ = 8πGC 2(2T θ
θ + T r

r − T 0
0 )

(A2)′C ′

C
− 1

C 2
(1− A2C ′2) = 8πGT r

r

Where T i
i are components of the energy-momentum tensor.
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Boundary conditions

These coupled, ordinary differential equations must be solved
simultaneously along with the boundary conditions specified by
finite energy constraints and regularity of the metric at the horizon.

Boundary Conditions

C (rs) = rs

A(rs) = 0 A(rs)2 =
1

rs
X (rs) = 0 X (∞) = 1

P(rs) = 1 P(∞) = 0.

The problem complicated by the ‘mixed type’ boundary
conditions.
The method used involves a Runge-Kutta algorithm on the
equations for the gravity fields and successive under-relaxation
on the matter fields, repeated on successive iterations.
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Results
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Figure: Field distribution for G=0.0 and G=0.02 vortices

Caveat: There is a small numerical artefact in these solutions
(not shown here) which needs some further investigation to
ascertaining its origin.
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Figure: Field distribution for
G=0.0 (close up), G=0.0 and
G=0.02 vortices (coordinates
appear flat at the horizon).
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Conclusions

Key observations:

Gravity fields are asymptotically Schwarzschild.

A2’s asymptotic value is increased by the presence of the
gravitating vortex.

If we look at the asymptotic Schwarzschild where A2 has been
multiplied by a constant λ.

ds2 = λ2A2dτ2 + 1
λ2 A

−2dr2 + 1
λ2 C

2(dθ2 + sin2θdφ2).

This factor can only be absorbed by a rescaling of dτ → dτ
λ and

dr → λdr

Therefore the period at infinity, β̃ = ∆τ
λ = β

λ , is reduced and

the temperature of the black hole T̃H = 1
β̃

is increased.
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Summary

Verified numerically that the presence of a vortex on a
Euclidean Schwarzschild black hole increased the temperature
of the system.

This supports previous work of my supervisor and
collaborators when looking analytically at the extreme case of
a thin weakly gravitating vortex on a black hole.

These results apply to the more general case of thicker and
stronger gravitating vortices.

This may well have important implications on other current
work in the field.
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