Taming the Boundaries A brief introduction to Heterotic M-Theory

John Omotani

University of Nottingham

14th May 2009

Outline

A very brief introduction to M-Theory Aside on Anomalies

Heterotic M-Theory

Why not Hořava-Witten?

What am I doing?

Conclusion

Outline

A very brief introduction to M-Theory

Heterotic M-Theory

Why not Hořava-Witten?

What am I doing?

Conclusion

John Omotani Taming the Boundaries University of Nottingham

String Theories

- ▶ 5 consistent (super-)string theories
 - I, IIA, IIB, SO(32) heterotic and $E_8 \times E_8$ heterotic
- Inter-related by dualities

► eg.

Type IIA compactified τ Type IIB compactified on circle of radius R $\xrightarrow{\tau}$ on circle of radius $\frac{\alpha'}{R}$

All part of one theory?

M-Theory

- ► Full M-Theory is unknown
- Low energy limit is 11d supergravity¹

$$S = rac{1}{2\kappa^2} \int \left(dv R - rac{1}{2} G \wedge *G - rac{1}{6} C \wedge G \wedge G + (ext{fermions})
ight)$$

- Compactification on a circle gives IIA supergravity
- Compactification on an interval gives heterotic supergravity (of which more later)

¹E. Cremmer, B. Julia, J. Scherk, Phys. Lett. B 76 (1978) 409

John Omotani

11d Content

- Field content is $g_{\mu\nu}$, $C_{\mu\nu\rho}$, ψ_{μ}
- But also 6-potential with field strength dual to G = dC
- p-potential couples to p-dimensional world volume
- M2 and M5 branes appear as sources for $C_{(3)}$, $C_{(6)}$

10d Content

- Compactifying gives the basic objects of the 10d string theory
 - M2 wrapping the circle \rightarrow string
 - M2 not wrapping the circle $\rightarrow D2$ brane
 - etc.

Aside on Anomalies

- Quantum anomalies²: quantum theory fails to respect classical symmetry
 - gauge symmetry: gauge anomaly (2k dimensions)
 - general covariance: gravity anomaly (4k + 2 dimensions)
- ie. Quantum effective action varies under gauge transformations/diffeomorphisms
- Perturbatively, shows up in hexagon diagrams

²L. Alvarez-Gaumé, P. Ginsparg, Ann. Phys. 161 (1985) 423, erratum-ibid 171 (1986) 233

John Omotani

Outline

A very brief introduction to M-Theory

Heterotic M-Theory

Why not Hořava-Witten?

What am I doing?

Conclusion

Gravity Anomaly

- 11d supergravity on an interval with two 10d boundaries
- 11d supergravity is anomaly free
- But chiral gravitino on the 10d boundary gives gravity anomaly
- Cancel with E_8 vector multiplet on the boundary

Boundary Theory

- Gauge theory on the boundary:
 - Gauge field A_{μ} with field strength $F_{\mu\nu}$
 - Gaugino χ
- Supersymmetry of boundary determines coupling to bulk supergravity
 - In particular $G \sim F^2$ and so C acquires an E_8 gauge variation

Gauge Anomaly

- ▶ 10d super-Yang-Mills also has a gauge anomaly
- ▶ Cancelled by (classical) variation of $\int C \land G \land G$
 - fixes the gauge coupling
- The only parameter in the theory is the gravitational coupling 2κ²

Outline

A very brief introduction to M-Theory

Heterotic M-Theory

Why not Hořava-Witten?

What am I doing?

Conclusion

What's the Difference?

- Supergravity action should include boundary terms involving the extrinsic curvature, $K_{\mu\nu}$
 - These were neglected by Hořava and Witten
- Non-trivial boundary condition: $K_{\mu\nu} = \kappa^2 \left(T_{\mu\nu} \frac{1}{9} g_{\mu\nu} T \right)$
- Super-Yang-Mills on the boundary means $T_{\mu\nu} \neq 0$ generally
- Affects the construction of the boundary conditions

Original Formulation

- ► Hořava and Witten³:
 - modified Bianchi identity (dG = ...) involving δ-functions
 - \blacktriangleright modified supersymmetry transformations, also involving $\delta\text{-functions}$
- ► Combined effect introduced divergences into the action (terms proportional to δ (0))
- \blacktriangleright Theory breaks down entirely beyond order κ^2

³P. Hořava, E. Witten, Nucl. Phys. B475 (1996) 94, hep-th/9603142

John Omotani

Improved Formulation

- Moss⁴:
 - ► Taking into account K_{µν} leads to modification of the chirality condition of ψ_µ: P₊ψ_µ ~ Fχ
 - supersymmetry transformations are unaltered
 - no δ-functions
- These are physically distinct theories

John Omotani

⁴I. Moss, Nucl. Phys. B729 (2005) 179, hep-th/0403106

Outline

A very brief introduction to M-Theory

Heterotic M-Theory

Why not Hořava-Witten?

What am I doing?

Conclusion

Current Work

University of Nottingham

- Working on 5d reduction of Moss's improved theory
- Are there phenomenologically important differences from work⁵ based on the Hořava-Witten version?

⁵eg. A. Lukas et al., Nucl. Phys. B552 (1999) 246, hep-th/9806051

John Omotani

Outline

A very brief introduction to M-Theory

Heterotic M-Theory

Why not Hořava-Witten?

What am I doing?

Conclusion

Finally

- ▶ 11d supergravity on an interval gives Heterotic M-Theory
- Structure is fixed by supersymmetry and anomaly cancellation
- Hořava and Witten's formulation fails to treat K_{μν} correctly and is led to divergences
- Moss's version treats $K_{\mu\nu}$ correctly and avoids divergences
- The consequences of the improved version for phenomenology are being investigated